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Abstract

In medical imaging, tissues and organs are visualized by measuring their interaction with
electromagnetic waves or magnetic fields that penetrate the body from various angles. While highly
successful, this practice usually involves exposing the patients to radiation, with the quality of the
resulting images improving as the latter increases. This increases the risk of pathologies like cancer.
In result, there is interest in reconstruction techniques that achieve high image quality from few
measurements. Machine learning approaches based on deep learning have recently proven promising
in this regard. However, they require large training datasets, which are difficult to collect in the
medical setting. A significant recent advance was the introduction of implicit neural representations
(INRs), which model images as continuous functions implemented by small neural networks.

This work proposes the first end-to-end INR architecture for computed tomography (CT) image
reconstruction. The performance of this architecture is assessed in terms of image reconstruction
quality and model calibration, i.e. the ability of the model to assign accurate confidence values to
the reconstructed image pixels. Uncertainty quantification is particularly important for medical
imaging since the reconstructed images inform doctor decisions and consequently patient outcomes.
A good understanding of model confidence in reconstruction of each image region can affect
those decisions, be leveraged for smart sensing acquisition of increased measurements in areas of
larger uncertainty, or even be used for automated triage and assignment of images to healthcare
providers with different degrees of specialization. Four established techniques from the uncertainty
estimation literature are implemented and compared in this work: deep ensembles, Monte Carlo
dropout, Bayes-by-backpropagation, and Hamiltonian Monte Carlo.

This study provides various interesting observations. It is shown that deep ensembles of Monte
Carlo dropout base learners, with varied architectures, achieve the best image reconstruction
performance and model calibration among the techniques tested; architecture parameters such as
activation function and random Fourier feature embedding frequency can have large effects on
model performance; some parameter choices (such as the use of the Sine activation function) can
produce networks of high performance but require extensive tuning of the network architecture;
previous intuitions about the role of certain network components (such as random Fourier feature
embeddings enabling the learning of high-frequency image features) hold, but only when certain
parameter values are precisely specified; and that Bayes-by-backpropagation is generally ill-suited
for sampling from INR posterior distributions. Several metrics are also proposed and shown to
be effective for monitoring the convergence of multi-chain Hamiltonian Monte Carlo methods in
sampling from both the network parameter and output posterior distributions.
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1
Introduction

Image reconstruction, generating 2D or 3D images of an organ from indirect and noisy measure-
ments, is central to medical imaging. Unlike standard photography, many medical imaging devices
cannot simply photograph visible light reflected by the organ of interest. Instead, these devices
emit higher frequency electromagnetic waves (X-rays), lower frequency electromagnetic waves
(micro- and radio- waves), or strong magnetic fields from several angles or viewpoints to penetrate
human tissue, interacting with matter inside the human body. Longer and stronger exposures
gather more information about the organ of interest, ultimately improving reconstruction quality.
However, the intrusive nature of these of scans can be harmful to the human body, with radiation
exposure linked to increased risk of long-term cancer [1–3]. Thus, it is important to minimize
scan duration and strength as much as possible, while still gathering enough information to
generate a high-quality reconstruction, enabling proper diagnosis.

Three primary categories of image reconstruction methods have been developed by the medical
imaging community to-date: (1) analytical and algebraic, (2) iterative, and (3) data-driven [4].
Analytical and algebraic techniques, such as filtered backprojection (FBP) [5], were proposed
as early as the 1980s, leveraging signal processing techniques, including the Fourier transform
and filtering. Although these procedures are fast, they suffer from poor resolution-noise trade-off.
Iterative approaches, such as the early algebraic reconstruction tomography (ART) procedure [6],
are more powerful but computationally intensive. They only became clinically available in
2009, as sufficient computational power made them feasible. These methods achieved improved
image quality by incorporating knowledge of the imaging system physics, reducing reconstruction
artifacts and noise. Able to generate high-quality reconstructions, the medical imaging community
focused on reducing scan time and radiation dosages, leading to the development of reduced
sampling techniques, such as compressed sensing (CS) [7, 8]. This enabled image reconstruction
from sparse measurement data, at the cost of slower reconstruction times. Meanwhile, with
the growing popularity of machine learning, the medical imaging community began using other
data-driven approaches. These include unsupervised learning [9, 10] and supervised deep learning
approaches, specifically convolutional neural networks (CNNs) [11, 12]. These machine learning

1



2 1. Introduction

approaches generally outperform competing classical methods. However, they require large
datasets for training, which can be difficult to collect in many medical settings. Furthermore,
many of these methods – deep learning in particular – lack model interpretability, which proves
especially problematic in medicine [13–15].

Beyond medical imaging, machine learning has undergone major advances in image represen-
tation and reconstruction over recent years. A significant recent advance was the introduction
of implicit neural representations (INRs), which represent complex coordinate-based signals as
functions encoded by small neural networks. For example, an image can be represented as a
function mapping (x, y) coordinates to (r, g, b) pixel intensities. INRs have taken the field of
computer graphics by storm, achieving impressive results in novel view synthesis [16–19], shape
representation [20–25], and texture synthesis [26, 27]. More recent work has also demonstrated the
applicability of this technique to medical imaging [28, 29]. In all of these applications, INRs have
been assessed primarily on their predictive accuracy and the plausibility of their reconstructed
signal. However, for medical imaging, which affects doctor decisions and patient well-being, it
is also important to understand the confidence of the model in the reconstructed image values.
For example, a model can quantify its uncertainty about the reconstruction quality of each image
pixel by outputting a variance per pixel location. If this variance is large in critical image regions,
such as the location of a potential tumor, a doctor should order additional scans to ensure proper
diagnosis. Uncertainty quantification can also be used for automated triage, e.g. by assigning
images with different levels of uncertainty to healthcare providers of different degrees of expertise.
This could decrease overall health care costs or be useful in certain settings, such as education
or remote diagnosis. Finally, understanding of model uncertainty could inform more efficient
measurement procedures, leveraging techniques such as active learning [30].

This work addresses these limitations by proposing the first end-to-end INR architecture for
computed tomography (CT) image reconstruction and assessing model performance in terms of
both image reconstruction quality and model calibration. In particular, we report the first study
of model selection for uncertainty calibrated INR architectures. Four established neural network
uncertainty estimation and calibration methods – deep ensembles [31], Monte Carlo dropout [32],
Bayes-by-backpropagation [33], and Hamiltonian Monte Carlo [34–36] – are implemented and
analyzed. This analysis produces several significant observations:

1. Deep ensembles of Monte Carlo dropout base learners with varied architectures achieve the
best image reconstruction performance and model calibration among the techniques tested.

2. Architecture parameters such as activation function and random Fourier feature embedding
frequency can have large affects on model performance. For example, the Sine activation
function achieves the best results for Monte Carlo dropout but can be quite inconsistent,
producing networks with large variation in reconstruction performance and calibration as
network hyperparameters, such as width or depth, are changed. In practice, this implies
that these networks require extensive parameter tuning to deliver their best performance.
Other activations, such as SiLU, perform slightly worse but are more robust with respect to
parameter configurations.
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3. Previous intuitions that random Fourier feature embeddings can enable the INR network
to learn high-frequency image features are confirmed. However, it was also found that the
embedding frequency must match the amount of training data available. Poor specification
of the frequency parameter can lead to reconstructions that are either too blurry or have
too many high frequency artifacts.

4. Bayes-by-backpropagation is generally ill-suited for sampling from INR posterior distributions,
achieving the worst performance of all uncertainty quantification approaches.

5. Several metrics can be used to monitor the convergence of multi-chain Hamiltonian Monte
Carlo methods when sampling from both the network parameter and predictive posteriors.
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2.1 Medical Imaging

Medical imaging plays an essential role in the diagnosis and monitoring of a range of medical

conditions, such as broken bones, stroke, cancer, blood clots, gastrointestinal issues, and, more

recently, COVID-19 [37]. The interior of the human body is generally imaged for clinical analysis,

medical intervention, and visual representation of organ or tissue physiology. There are a wide range

of imaging technologies, including X-ray radiography, magnetic resonance imaging (MRI), computed

tomography (CT), ultrasound, positron emission tomography (PET), and single-photon emission

computed tomography (SPECT). Such imaging devices emit high-frequency X-rays, microwaves,

radio-waves, or strong magnetic fields that penetrate the human body from several viewpoints or

angles, interacting with internal tissue. Reconstruction algorithms use the measurements of these

attenuated signals to reconstruct a 2D or 3D image of the tissue. In general, image reconstruction

accuracy improves with longer and stronger exposures, from an increased number of views or angles.
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6 2.1. Medical Imaging

Figure 2.1: Illustration of a CT scanning device. Reproduced with permission from [38], Copyright
Massachusetts Medical Society.

2.1.1 Radiation Exposure

As of 2010, 5 billion medical imaging studies were performed worldwide, two-thirds of which
employed ionizing radiation [2]. Since then, the use of radiology has only grown, with a 16%
increase in the United Kingdom from 2013 to 2018 and over 42 million examinations carried
out by the UK National Health Service in 2016-17 [39]. Whilst the increased use of radiology
has undoubtedly improved medical care, diagnostic X-rays are the largest man-made source of
radiation exposure to the general population [3]. CT comprises the majority of this exposure [38]
and will be the focus of this work.1

Such radiation exposure has been known to increase the risk of cancer, with an estimated
29,000 current or future cancer cases linked to CT scans performed in the United States of America
in 2007 alone [40]. While there are alternative imaging platforms available, CT scanners provide a
compromise between the highly detailed images generated by MRI and the quicker scan time and
lower cost of plain X-ray imaging. Further, different imaging modalities enable better visualization
of different tissue types, with not all patients able to use all imaging modalities. For example,
patients with metal implants, such as pacemakers, cannot use MRIs. This makes it impossible to
simply use other imaging modalities and creates interest in reducing radiation exposure of CT
exams. Minimizing radiation strength and time is an active, ongoing area of research [41–43]. In
this work, we focus on improving algorithmic reconstruction performance of CT images, especially
in the limited measurement regime, through uncertainty quantification. In addition to enabling
better medical diagnosis, good model calibration could eventually enable reduced measurements
and radiation exposure, via machine learning techniques such as active learning.

1It should be noted that while we focus on CT imaging, the techniques developed in this work can be applied
more broadly to other medical imaging techniques.
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Figure 2.2: The attenuation coefficient (f) of different tissues found in the body, as a function of
energy (keV). The plot was generated using X-ray mass attenuation coefficients (f/ρ) and densities
(ρ) from the NIST Standard Reference Database [45, 46].

2.1.2 Computed Tomography (CT)

Computed tomography (CT), also known as computed axial/assisted tomography (CAT), is a
noninvasive medical imaging technique frequently used in radiology to generate detailed images
of the body. Since its original development in the 1970s, CT has become widespread in medical
imaging – with over 70 million CT scans taken and reported annually in the United States, since
2007 [44]. There are multiple types of CT scanners, such as spiral CT, electron beam CT, and CT
perfusion imaging. For now, we focus on spiral, also know as spinning tube or helical, CT.

In spiral CT, illustrated in Figure 2.1, the patient lies along the central axis of a cylindrical
measurement tube. As the scan is performed, an X-ray generator rotates around the patient
while moving along the axis of measurement. X-rays are emitted, which pass through the patient
and are attenuated at various rates by the different types of tissues in the body, as described in
Section 2.1.3. After exiting the body, the attenuated X-rays are measured by X-ray detectors
positioned and moving opposite to the X-ray source. These measurements are used to create a
sinogram, as described in Section 2.1.4, which is not understandable by doctors. This sinogram
is then input to a reconstruction algorithm, which solves an under-determined inverse problem,
described in Section 2.1.5, to generate a human-understandable 2D or 3D image of the organ
of interest. This image can then be used by the doctor for medical diagnosis.

2.1.3 X-Ray Attenuation

X-rays produced by CT scanners can interact with matter via the photoelectric effect, the Compton
effect, and coherent scattering, as described in Appendix A. Through these interactions, some
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Figure 2.3: An abstraction of the CT measurement process and resultant sinogram data. In a CT
scan, an X-ray source and detector spin around a patient, in this case a large orange circle and
small blue point. The measurement axes, defined by r and s, rotate around the origin of the fixed
frame axes, defined by x and y, according to measurement angles θ. At each angle, X-rays are
sent in parallel along r through the patient and are attenuated according to the different tissue
attenuations, f(x, y), in the patient before being measured by the detectors. The measurement
values for each each angle, pθ(r), are stacked to produce a sinogram. Notice that the blue off center
point appears as a sinusoid in the sinogram.

of the emitted X-ray photons are absorbed or scattered when passing through different tissues
in the body. The attenuation is described by the Beer-Lambert Law,

J = J0e
−fL, (2.1.3.1)

where J and J0 are the incident and transmitted X-ray intensities; L is the material thickness;
and f is the linear attenuation coefficient of the material,

f = τ1 + τ2 + τ3, (2.1.3.2)

with photoelectric (τ1), Compton (τ2), and coherent scattering (τ3) attenuation coefficients.
Attenuation coefficients for common materials in the body – iodine, bone, water, and soft-tissue
– are plotted, in Figure 2.2, over the range of incident X-ray energies used in CT imaging. It
is clear that the attenuation of X-ray photons can be used to distinguish and, thus, image
various tissues in the body [47].

2.1.4 CT Projection Measurements

As described in Section 2.1.2, the CT scan relies on an X-ray generator which rotates around the
patient, emitting X-ray photons. In this work, we only consider the restricted case of the spiral
CT setup, in which there is no motion along the patient axis. Instead, we focus on reconstructing
singular 2D image cross-sections and assume a parallel-beam geometry, in which photons are
emitted and detected with the linear geometry of Figure 2.3.

We begin by considering the measurements of a single detector, measuring at angle θ. Assume
that the X-ray generator outputs monoenergetic X-rays of intensity J0. If the patient were
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simply a homogeneous block of tissue, with length ∆` and attenuation coefficient f , we could

directly apply the Beer-Lambert law (Equation 2.1.3.1),

J = J0e
−f∆`, (2.1.4.1)

to solve for the output attenuated X-ray intensity J . In reality, several blocks of tissue will

be present in the patient, each with its own attenuation coefficient. However, since the exit

X-ray flux from one block of tissue is the entrance X-ray flux to its neighboring block, we

can simply apply the Beer-Lambert law in a cascading fashion over intervals of length ∆`

and attenuation coefficients (f1, f2, ..., fn),

J = J0e
−f1∆`e−f2∆`...e−fn∆` = J0e

−
∑n

i=1
fi∆`. (2.1.4.2)

As ∆`→ 0, the summation term becomes an integration over the length, L, of the patient,

J = J0e
−
∫

L
f(`)d`

. (2.1.4.3)

Finally, dividing both sides of the expression by J0 and taking a negative logarithm, we define

the projection measurement term,

pθ = − ln
(
J

J0

)
=
∫
L

f(`)d`. (2.1.4.4)

As illustrated in Figure 2.3, a CT scanner with a parallel beam geometry contains several

detectors side-by-side, collectively measuring a plane of attenuated X-ray photons. In this 2D

imaging space, the projection measurement becomes a function of detector position, r. Thus,

Equation 2.1.4.4 is re-expressed as the line integral,

pθ(r) = − ln
(
J

J0

)
=
∫
f(θ, r)ds, (2.1.4.5)

known as a forward-projection (FP). It follows from the coordinate system of Figure 2.3 that, for

measurements at angle θ, point (x, y) within the patient cross-section is projected onto detector posi-

tion

r′ = x cos θ + y sin θ. (2.1.4.6)

Combining this with (2.1.4.5), we derive the Radon transform [48] of the patient cross-section,

pθ(r) = − ln
(
J

J0

)
=
∫
Y

∫
X
f(x, y) δ(x cos θ + y sin θ − r) dxdy, (2.1.4.7)

where δ is the Dirac delta function and X ×Y is the set of image pixels (x, y). Sweeping over all the

angles, these projective measurements are stacked to form a Radon transform image. As depicted

in Figure 2.3, the projection measurements of the blue point across several angles produces a

sinusoidal curve. The representation of all the CT scan measurements is thus known as a sinogram.
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2.1.5 CT Image Reconstruction Problem

Sinograms are not human-interpretable. They depict the integrated attenuation coefficients, or
projection measurements (pθ(r)), of the patient cross-section from several angles (θ) over all
detector positions (r). Instead, the desired outcome of a CT scan is a reconstructed image of
the cross-section itself. This corresponds to the attenuation coefficient function, f(x, y), which
is the inverse of the Radon transform of (2.1.4.7), or

f(x, y) = 1
2π

∫ π

0
uθ(x cos θ + y sin θ) dθ, (2.1.5.1)

where uθ is the derivative of the Hilbert transform of pθ(r) [49]. The projection-slice theorem [50]
ensures that f can be fully reconstructed with infinite measurement angles, θ. In practice, however,
it is not possible to acquire infinite measurements. Typically, reconstruction quality improves
with number of measurements, but this increases radiation exposure. In practice, hundreds of
measurements are performed in a CT scan, but there is interest in reducing this number. In this
work, we study algorithm performance in the very low measurement data regime, where uncertainty
quantification over the value of f(x, y) becomes especially important. The combination of limited
and noisy real-world data renders the reconstruction of the desired image much more complex
than simply evaluating the integral of (2.1.5.1). Leveraging assumptions or data-driven insights
about the measurements and physics at play, several statistical models have been developed and
used to derive various image reconstruction algorithms. For a discussion of some of the main,
clinically approved, classical image reconstruction algorithms considered in this work – filtered
back-projection (FBP), conjugate gradient least squares (CGLS), expectation-maximization
(EM), simultaneous iterative reconstruction technique (SIRT), and simultaneous algebraic
reconstruction technique (SART) – we refer the reader to Appendix B.

Note: For the remainder of this work, we will denote the linear attenuation coefficient
function as f ∈ F . Further, f(x, y) denotes the linear attenuation coefficient at each pixel
(x, y) in the ground truth image I. Our statistical model will use sinogram measurement
data, pθ(r), to produce a reconstructed image, K, corresponding to a predicted attenuation
coefficient function f̂(x, y).

2.1.6 Implicit Neural Representations

In this work, we investigate an alternative to the CT image reconstruction problem based on
artificial neural networks (ANNs), frequently referred to as neural networks (NNs). These are
formally defined and described in the broader context of deep learning in Appendix C. Implicit
neural representations (INRs), also known as coordinate-based representations or neural function
representations, are a novel means of parameterizing signals, using small NNs. Typically, signals
used in computation are discrete. For example, 2D images are generally represented as grids of
pixels, while 3D objects are often represented as point-clouds, grids of voxels, or meshes. INRs,
however, parameterize all these signals as continuous functions, mapping between low-dimensional
spaces, from coordinate to signal value. This function is learned and approximated by a small NN.
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For example, a 2D image is parameterized by the function f : X × Y → R3, implemented with
a NN which takes as input the pixel location (x, y) and outputs RBG pixel values. The image
can be fully reconstructed by sampling the NN at each pixel location. Similarly, a 3D object is
parameterized by the function h : X×Y×Z×Θ×Φ→ R3×Γ, implemented with a NN which takes
as input the pixel coordinate (x, y, z) and view direction (θ, φ), outputting RGB pixel values and
opacity γ. In this case, the object is reconstructed via volume rendering, by strategically sampling
pixels in the object point-cloud and integrating pixel colors and opacity over the view direction.

In 2019, INRs were demonstrated to outperform traditional grid, mesh, and point-cloud
approaches for shape modeling and reconstruction. A 3D object shape is instead represented
as a signed distance function (SDF)2 learned from a set of training shapes [20, 25, 54]. Since
then, INRs have been used as continuous, memory-efficient representations of shape parts [22, 23],
objects [55–57], and scenes [24, 58, 59]. In addition to representing shapes via SDFs, INRs were also
extended to encode object appearance [17, 18, 27], as in the previously described 2D image and 3D
object examples. Among the most impactful of these works are neural radiance fields (NeRF) [16],
which achieve state-of-the-art results in novel view synthesis by using random Fourier features as
positional encodings, facilitating the representation of high frequency functions by the MLP [60].

In the year since the publication of the original NeRF paper, there has been an explosion of
literature applying and improving the technique [61]. Particularly impressive among NeRF
extensions is NeRF in the Wild (NeRF-W), which renders high-resolution 3D scenes from
unstructured collections of 2D images ‘in the wild’ and encodes transient scene features as
tuneable latents [62]. Among attempts to improve NeRF performance, sinusoidal representation
networks (SIRENs), which use sinusoidal activation functions, were argued to outperform ReLU-
based INRs [63]. Meta-learning has also been shown to improve INR performance [19, 64–66], by
improving model initialization to enable faster convergence and improving performance in the case
of limited data. As far as we are aware, no work has been done to quantify uncertainty of INRs,
barring the use of active learning to further improve performance in limited-data regimes. More
recently, INRs were applied directly to the CT image reconstruction challenge. The coordinate-
based internal learning (CoIL) network [28] uses an INR with a Fourier feature mapping to learn
the sinogram measurement field from sparse measurements. Meanwhile, the AutoInt network [67]
automates integration by instantiating an integral NN but training over the derivative NN, offering
an end-to-end means of calculating the Radon transform with only two network evaluations. This
work found that, in the context of CT image reconstruction, although SIREN fit the measurements
best, the swish activation function with positional encoding generalized the best, especially to
unseen views. Finally, INRs have also been used as static priors for parametric motion fields in
the reconstruction of dynamic (4D) CT [29]. As was generally the case with INRs, none of these
works mention or quantify uncertainty in the final model and reconstruction.

2A SDF is a continuous function that encodes an object as a surface. For a given point in 3D, the SDF outputs
the point’s distance to the closest surface point. The sign of the distance determines whether the point lies
inside (negative) or outside (positive) of the surface. If the distance is zero, the point lies exactly on the object
surface [51–53].
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2.2 Uncertainty Quantification for Neural Networks

For a given measurement data set, many NN parameters settings, W , can achieve decent image
reconstruction. In this work, we leverage this non-uniqueness in network parameterization to
quantify the uncertainty of the network predictions f̂ .

2.2.1 Types of Uncertainty

Bayesian modeling can address two distinct types of uncertainty: aleatoric and epistemic [68,
69]. Aleatoric uncertainty is due to measurement noise, such as X-ray detector noise. This
type of uncertainty cannot be reduced, even if more measurements are taken, since it is inherent
to the measurement. To see why, think of rolling an unbiased die. Irrespective of how many
times you roll the die, you will always be uncertain of the outcome of the next roll, since each
outcome has a 1

6
th probability. On the other hand, epistemic or model uncertainty accounts

for uncertainty in the model parameters. This type of uncertainty can be reduced with more
measurement data. To see why, imagine a model that aims to predict the outcome of a biased die
roll, with no prior information about the bias. As more data is taken, the variance in the model
parameters decreases, and the model output distribution better approximates the true biased
die distribution. This work primarily utilizes noiseless data, meaning we are most interested in
quantifying epistemic/model uncertainty. Namely, we consider how well the model reconstructs
the ground truth attenuation coefficient image from the sinogram data.

2.2.2 Bayesian Neural Networks (BNNs)

In deep learning, epistemic uncertainty can be quantified with resort to Bayesian neural networks
(BNNs) [70]. Recall that a NN outputs f̂ , an approximation of the desired ground truth,
f . Assume we are given: a function over ground truth values h(f1, ..., fn)3, a prior over the
network weights p(W ), and an observation likelihood p(h|W ). Bayes’ rule can be applied
to calculate the weight posterior,

p(W |h) ∝ p(h|W ) p(W ), (2.2.2.1)

which is then used to quantify the uncertainty over the the network output, f̂ , through the
posterior predictive function

p(f̂ |h) =
∫
p(f̂ |W ) p(W |h) dW. (2.2.2.2)

Due to the high-dimensional parameter space, this integral must be approximated to enable
computationally efficient BNN inference.

One such popular method is Bayes-by-Backprop (BBB) [33], a variational approximation
to exact Bayesian updates. Variational learning aims to find the optimal parameters ψ of an
approximate distribution on the NN weights, q(W |ψ), also known as the variational posterior.
This is achieved by maximizing the variational free energy / evidence lower bound (ELBO),

F(h, ψ) = Eq(W |ψ)[log p(h|W )]−KL [ q(W |ψ) || p(W ) ], (2.2.2.3)
3In the context of medical imaging with INRs, h(f1, ..., f|X×Y|) is the Radon transform of the network output

at all pixel locations (Equation 2.1.4.7), since our data is a sinogram consisting of projective measurements pθ(r).
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with respect to the weight distribution parameters ψ, i.e. computing arg maxψF(h, ψ). The
ELBO can be approximated by Monte Carlo,

F(h, ψ) ≈
n∑
i=1

log p(h|W(i)) + log p(W(i))− log q(W(i)|ψ), (2.2.2.4)

where W(i) are samples drawn from variational posterior q(W(i)|ψ). In this work, a Gaussian
distribution is used as the variational posterior, parameterized by ψ = (µψ, σψ), with mean µψ

and standard deviation σψ. The elements of σψ comprise a diagonal covariance matrix, meaning
weights are assumed to be uncorrelated. A Gaussian prior, p(W ) = N (W |σ2), with tunable σ
is used to initialize the network. Training the network requires computing a forward-pass and
backward-pass. Although the network is parameterized by a distribution of weights, in each
forward pass a single sample is drawn from the variational posterior and propagated through the
network to perform updates. A re-parameterization trick, in which the sample ε is transformed
by the function µψ + σψ � ε, is used to ensure a gradient can be calculated for backpropagation.
Finally, to aid learning, it is common to modify the ELBO as

F̃(h, ψ) = Eq(W |ψ)[log p(h|W )]− ξ ·KL [ q(W |ψ) || p(W ) ], (2.2.2.5)

where ξ << 1 is an added hyperparameter, known as the KL factor. This is beneficial
for training because it puts greater emphasis in the loss on the training data, through the
Eq(W |ψ)[log p(h|W )] term4.

Another popular approach to BNN approximate inference is Monte Carlo dropout (MCD) [32].
A neural network, of arbitrary non-linearities and depth, is mathematically equivalent to an
approximate deep Gaussian process if dropout is applied to every weight layer. Thus, the
network’s dropout objective minimizes the KL-divergence between an approximate distribution
and the deep Gaussian process posterior. The first two moments of this distribution can be
empirically approximated, using a Monte Carlo estimate of B Bernoulli sampled weight matrices,
W(b). The predictive mean is thus calculated as,

Eq(f̂ |h)(f̂) ≈ 1
B

B∑
b=1

f̂(W(b)), (2.2.2.6)

which is equivalent to averaging the results of B stochastic forward passes through the network.
A final means of approximate BNN inference, which we explore in this work, is Hamiltonian

Monte Carlo (HMC) [34–36]. Originally proposed for calculations in lattice quantum chro-
modynamics [34], HMC is an instance of the Metropolis-Hastings algorithm [71] for Markov
Chain Monte Carlo (MCMC) [72]. In the context of quantifying NN uncertainty, HMC can be
used to obtain a sequence of random samples that converge to samples from the BNN posterior
distribution, p(W |h) [73]. For the high-dimensional distributions associated with BNNs, the
density p(W |h) is concentrated at the distribution mode, while the volume dW is concentrated at
the distribution tails. As illustrated in Figure 2.4, the resulting distribution expectation – a product
p(W |h)dW of distribution volume and density – concentrates in a nearly-singular neighborhood,

4In the context of medical imaging with INRs, this emphasizes how closely the Radon transform of the network
outputs are to the sinogram measurement data.



14 2.2. Uncertainty Quantification for Neural Networks

Figure 2.4: An illustration of concentration of measure, in which the expectation, p(W |h)dW ,
of the BNN’s high-dimensional weight posterior is concentrated in the typical set. This can be
attributed to the fact that, while most of the distribution density p(W |h) is concentrated about the
distribution modes, the volume dW is concentrated at the tails. Unlike other MCMC methods, HMC
efficiently explores and samples from the entire distribution typical set. (Figure inspired by [36].)

known as the typical set. Traditional Metropolis-Hastings MCMC, using a Gaussian random
walk proposal distribution, typically fails to explore the full typical set of these distributions.
HMC, however, leverages the physics of Hamiltonian dynamics via a time-reversible and volume-
preserving integrator, to simulate and propose points scattered around the typical set. This
significantly improves exploration of the full distribution and decreases the correlation between
consecutive samples, reducing the total number of required MCMC samples.

2.2.3 Deep Ensembles

Alternatively, predictive uncertainty can be quantified by aggregating the outputs of several NNs
trained for the same task, a method known as deep ensembles (DEs) [31]. This is inspired by
ensembling statistical models, i.e. trees, where randomization is achieved by bagging, or training
several models on different data bootstrap samples. If the base learner lacks intrinsic randomness,
meaning it can be trained efficiently via convex optimization, bagging induces diversity and reduces
variance. However, since NN training can have many local optima and should be trained with
as much data as possible, such a bootstrap procedure can be detrimental to performance [74].
DEs of NNs instead induce randomization by randomly initializing each network’s parameters
and randomly shuffling the data. For models that already quantify uncertainty, DEs can be used
to improve uncertainty calibration. Combining base learners by ensembling helps to capture
model uncertainty, by averaging predictions over multiple models consistent with the training
data. This makes the ensemble robust to model misspecification and out-of-distribution examples.
It was shown in the original DE work [31], that even as few as five base-learners can significantly
improve uncertainty calibration. In principle, more base learners results in better performance,
but training large ensembles is computationally expensive, given the need to train each individual
base learner (if not more, in order to prune for the best performing models).

In this work, we consider DEs in which each base learner has a different architecture and
a unique set of weights. Recent work [75] has shown that ensembling over architectures can
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outperform the more common single-architecture DEs for uncertainty estimation. The ensemble
of NN base learners is defined as a uniformly weighted mixture model, combining predictions as

p(f̂) = 1
M

M∑
m=1

p(f̂(m)|W(m)), (2.2.3.1)

where M is the total number of NNs in the ensemble and each f̂(m) is a unique architecture with
learned weights W(m). For regression tasks, the predictive uncertainty of the DE is approximated
by a Gaussian distribution of mean and variance

µ(f̂) = 1
M

M∑
m=1

µ(f̂(m)|W(m)) (2.2.3.2)

σ2(f̂) = 1
M

M∑
m=1

(σ2(f̂(m)|W(m)) + µ2(f̂(m)|W(m)))− µ2(f̂). (2.2.3.3)
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3.1 Artificial Medical Data Generation

In this work, we use the Shepp-Logan phantom data generation method [76], implemented via
the phantominator Python package, to create artificial images of 2D brain cross-sections, known
as phantoms. These artificial brain images are produced by overlaying randomly oriented and
sized ellipses with different attenuation coefficients on a background of 256 × 256 pixels. The
Radon transform, discussed in Section 2.1.4, is used to generate sinograms of these ground truth
images, producing artificial measurement data. The number of views is defined as the number
of measurement angles, θ, used in generating the sinogram. Gaussian noise of zero mean and
tunable standard deviation is added to all pixels, to create sinograms that more realistically
approximate actual measurement data. The data generation pipeline is depicted in Figure 3.1.
In this work, we use noiseless data for most experiments. Assessing model performance in the
noisy data regime is an important next step, which is left for future work.

17
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Figure 3.1: A flowchart of the artificial data generation pipeline used in this work. A Shepp-Logan
phantom is used as groundtruth image. (a) The Radon transform is used to generate a sinogram,
corresponding to measurement data. (b) In the noiseless case, this sinogram is directly used to train
our model, which produces a reconstructed image of the ground truth. Note that even though the
sinogram is noiseless, the reconstruction is not perfect. (c) In a more realistic scenario, Gaussian
white noise is added to the sinogram. (d) This noisy sinogram data is then fed into the model,
which produces a reconstructed image of the ground truth, of lower quality that produced in the
noiseless case.

3.2 Classical CT Reconstruction

Five classic CT image reconstruction methods – FBP, CGLS, EM, SART, and SIRT – described
in Appendix B, were used to establish a baseline for reconstruction performance. These were
implemented with the TomoPy ASTRA package [77]. Their results are reported in Section 4.1.

3.3 INRs with Uncertainty for Medical Imaging

In the context of CT medical imaging, the INR model should quantify uncertainty in its
reconstruction, f̂ , of the attenuation coefficient function, f . Recall, however, that the model only
has access to potentially noisy projective measurement data, pθ(r), which is related to f by the
Radon transform, as described in Section 2.1.4. Hence, uncertainty quantification of INRs for
medical imaging requires some modifications to the previously described MLP formulation.

3.3.1 Encoding CT Image Reconstruction in INRs

While the CT measurement data comes in the form of a sinogram, pθ(r), the goal of reconstruction
is to generate a photo of the cross-section of attenuation coefficients, f(x, y). In Section 4.1, we
experimentally demonstrate how classic reconstruction performance improves as a function of
increased measurements views, as predicted by the projection slice theorem. The recent CoIL
work [28] leverages this by using an INR to learn a functional form of the sinogram. The model input
is sinogram location (θ, r) and the output is projection measurement pθ(r). The resulting sinogram
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Figure 3.2: The CoIL [28] approach to image reconstruction learns a functional form of the sinogram
and relies on an external, classical reconstruction algorithm to generate the desired CT cross-section
image. Our approach instead leverages an end-to-end architecture, directly learning a functional
form of the desired reconstruction image. This is achieved by applying a Radon transform to the
fully sampled image in each training epoch, in order to retrieve the reconstructed sinogram for
training.

is then passed to a classical reconstruction algorithm, which reconstructs image f̂ . By generating
a functional sinogram, the CoIL INR enables sampling from more view angles than the original
measurement data. This enables the classical algorithm to achieve improved reconstruction quality.

In this work, we consider instead, an end-to-end approach to image reconstruction. Rather
than predicting the sinogram measurement field, our model directly predicts the final cross-section
attenuation coefficient function, as illustrated in Figure 3.2. This is mostly for two reasons. First,
experience with NNs has shown that end-to-end predictions are generally more accurate than
those produced by combinations of handcrafted modules. Second, the uncertainty quantification
must be presented at the pixel level to be of use for most applications. The network must thus
generate an output image and associated uncertainty map. For 2D Shepp-Logan phantoms, the
model input is a pixel coordinate (x, y) and its output is the corresponding predicted attenuation
coefficient value f̂(x, y). The sinogram data is incorporated in the model via the training loss
function. Given a groundtruth sinogram pθ(r), the loss of the INR output f̂(x, y) is defined as

L
(
pθ(r), f̂(x, y)

)
= 1

2|Θ×R|
∑
θ∈Θ

∑
r∈R

(
pθ(r)−

∫
Y

∫
X
f̂(x, y) δ(x cos θ + y sin θ − r) dxdy

)2
,

(3.3.1.1)
where Θ = {θ1, ..., θn} is the set of view angles, R = {r1, ..., rn} the set of discrete detector
measurement locations, X × Y the set of image pixels (x, y), and the integral surrounding f̂

is the Radon transform. For sinograms derived from an artificial ground truth image, f(x, y),
the projective measurements are defined as

pθ(r) = N (0, σ2) +
∫
Y

∫
X
f(x, y) δ(x cos θ + y sin θ − r) dxdy, (3.3.1.2)
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where N (0, σ2) is an optional Gaussian noise term. Since the loss is calculated directly on
the desired output, end-to-end training minimizes the propagation of error. However, it has
a cost in terms of training complexity. Each training iteration requires sampling the model
|X × Y| times, once per image pixel, and a Radon transform must be calculated for all |Θ×R|
points in the sinogram. For a 256 × 256 image with 20 view angles (θ) and detector length of
256 (r), this adds up to 335, 544, 320 operations. However, given the relatively small nature of
INRs by deep learning standards, we did not find this computationally barring, with networks
taking no more than a few minutes to train.

3.3.2 Uncertainty Quantification of INRs for CT Image Reconstruction

In the traditional NN setting, weights are treated and trained as point estimates. For uncertainty
quantification, we convert the NN into a BNN, in which each weight has a distribution of
values. Weight Wij is assigned a Gaussian prior, p(Wij) = N (µij , σij), and the weight posterior
distribution p(Wij |h) and the posterior predictive distribution p(f̂ |h) are given by (2.2.2.1) and
(2.2.2.2), respectively. In practice, it is not feasible to reconstruct the entire posterior predictive
distribution. Instead, we sample from the distribution N times to generate an approximation. The
exact implementation of training and sampling depend on the uncertainty quantification method.

BBB approximates the posterior weight distribution via the variational inference approach
described in Section 2.2.2. After training, each weight is characterized by the distribution q(Wij |ψ).
To approximate the predictive posterior, a set of N weight matrices, {W (k)}Nk=1, is sampled from
q(W |ψ). For each matrix W (j), the network is treated as a point-wise INR of weights W (j) to
synthesize a noisy image, K(j) = {f̂W (j)(x, y)}X×Y . The N reconstructed image samples are used
for uncertainty quantification, producing average image, K̄, with variance image, K∗, defined as

K̄ = 1
N

N∑
j=1

K(j) ; K∗ = 1
N

N∑
j=1

(
K(j) − K̄(j))2, (3.3.2.1)

in which all operations are performed pixel-wise. The average image K̄ would be presented
to a doctor and is used for peak signal-to-noise ratio (PSNR) calculation. Meanwhile, the
variance image K∗ could be used by a doctor to gain better understanding of uncertainty in the
reconstructed image and is used for negative log-likelihood (NLL) calculation. The computations
of the PSNR and NLL calculation are described in Appendix E.

For MCD, practical uncertainty quantification follows closely from the theory discussed in
Section 2.2.2. A standard point-wise INR is trained. At each evaluation, N forward-passes are
performed, in which all parameters are held constant, except for a subset of each layer’s weights,
which are set to zero according to the probability of dropout. The final network output of each
forward-pass is saved as image sample K(n). As in (3.3.2.1), these samples are used to calculate
the average and variance images. Implementing a DE over MCD baselearner architectures simply
requires generating N

M image samples per baselearner and aggregating all of them, using

K̄DE = 1
N

M∑
m=1

N/M∑
j=1

K(j)
m ; K∗DE = 1

N

M∑
m=1

N/M∑
j=1

(
K(j)
m − K̄

(j)
DE
)2
. (3.3.2.2)



3. Methods 21

−2 −1 0 1 2

x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
ct

iv
at

io
n
(x

)

ReLU

SiLU

Sine

SoftPlus

Tanh

Figure 3.3: The five different activation functions – ReLU, SiLU, Sine, SoftPlus, and Tanh – used
in our experiments.

Finally, in HMC, the problem of sampling parameters, {W (1), ...,W (N)}, from the BNN weight
posterior, p(W |h), is reformulated in terms of physics-inspired dynamics. This is achieved by
mapping the problem into an artificial Hamiltonian, with system potential energy governed
by the parameter values and a system kinetic energy artificially designed to preserve overall
energy, ensuring the algorithm samples points within the typical set. A detailed description of
the HMC sampling algorithm is included in Appendix F. After the HMC algorithm is run, T
weight parameter samples are generated, excluding the B prior burn-in samples. Rather than
saving all T samples, we only save a subset, N << T . Saved samples are equally spaced among
the T in an effort to minimize their correlation, in the case of poor HMC chain mixing. These
N weight samples are then fed into the INR to generate image samples {Kn}Nn=1, which are
used to calculate average and variance images as described in (3.3.2.1). Note that in practice
N = 50 was used for all uncertainty quanitification approaches.

3.4 Tuneable MLP Model Parameters

There are several degrees of freedom in designing an MLP, including its size, embeddings, activation
functions, and optimizer. These design choices are critical in determining model performance, but
there is little theoretical understanding of how to best select most of these model parameters.
In this work we tuned over network width, depth, and activation function. Network sizes were
kept fairly small, as is common in the INR literature. Activation functions considered include the
rectified linear unit (ReLU), sigmoid-weighted linear unit (SiLU), Sine, SoftPlus, and Tanh
functions, plotted in Figure 3.3. Given recent work indicating that random Fourier features
(RFFs) assist network learning of higher-frequency image components [60], all networks were
initialized with an RFF embedding of tuneable frequency Ω0. Finally, all networks were optimized
using the adaptive moment estimation (Adam) optimizer or adaptive moment estimation with
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weight decay (Adam-W) optimizer (with an added weight decay hyperparameter). We provide
detailed descriptions of these tuneable model parameters, as well as known insights for how
they affect model performance, in Appendix D.

3.5 Model Performance and Uncertainty Metrics

Several metrics are commonly used to evaluate model performance and uncertainty calibration.
Well known are peak-signal-to-noise Ratio (PSNR) and negative log likelihood (NLL), for which
we refer the reader to Appendix E. In this section we primarily focus on calibration and coverage.

3.5.1 Calibration and Coverage

Calibration is a metric that assesses a model’s ability to predict the probabilities of its outcomes,
gauging the reliability of the model’s confidence in its predictions. For example, a model performing
class predictions is considered calibrated if it assigns a class 50% probability and that class actually
appears 50% of the time in prediction. For further information on calibration of class prediction
models, we refer the reader to [78, 79]. Since this work focuses on regression models, the remaining
discussion is centered on calibrated regression [80].

Let F be the cumulative distribution function (CDF) of model predictions f̂(x, y), that seek
to approximate ground truth image f ∈ F , where F denotes the functional space of possible
images. Letting f̂x , f̂(x, y) We denote the corresponding quantile function as

F−1
x (p̃) = inf{fx : p̃ ≤ F (fx)}, (3.5.1.1)

where F−1 performs the mapping F−1 : [0, 1]→ F and p̃ is a confidence interval. For calibrated
regression, ground truth pixel f(x, y) should fall in a, say, 90% confidence interval 90% of the
time. Thus, the regression model is calibrated for confidence interval p̃ if

lim
X→∞

1
X

T∑
x=1

I
{
fx ≤ F−1

x (p̃)
}

= p̃ , ∀p̃ ∈ [0, 1], (3.5.1.2)

as the number of pixel samples approaches infinity, X →∞. If fX denotes the ground truth value
for i.i.d. random pixel (x, y) ∈ X, a sufficient condition for calibrated regression is

p
(
fX ≤ F−1

X (p̃)
)

= p̃ , ∀ p̃ ∈ [0, 1]. (3.5.1.3)

Since practical dataset sizes are finite, preventing perfect calibration, different metrics have been
developed to assess empirical model calibration.

Reliability diagrams serve as a visual representation of model calibration, plotting expected
sample accuracy as a function of average model confidence. Ideally these would be continuous plots,
but, in practice, samples are binned into M bins according to their prediction confidence. Let Bm
be the set of indices, i, of samples with prediction confidence, p̂i in the interval Im = (m−1

M , mM ]. The
expected accuracy (acc) and confidence (conf) are approximations to the terms of (3.5.1.3), namely

p
(
fX ≤ F−1

X (p̃)
)
≈ acc(Bm) = 1

|Bm|
∑
i∈Bm

I
{
fi ≤ F−1

i (p̃)
}

(3.5.1.4)

p̃ ≈ conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂i. (3.5.1.5)
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Figure 3.4: Both plots were made with an MCD model trained on 20 views, achieving a PSNR
of 19. Left) A plot of the model reliability curves, with the grey dashed line indicating a perfectly
calibrated model. The blue curve is the empirical reliability curve of the model when a small δ
term is added symmetrically to the target coverage, in order to slightly widen the quantile ranges.
Although this δ term has nearly negligible magnitude, it significantly improves the model reliability
curve, as illustrated by the orange curve of reliability without the added δ term. Right) The added
δ term was not chosen arbitrarily, but selected to minimize ECE.

The calibration error (CE) is the discrepancy

CE(p̃) = | p
(
fX ≤ F−1

X (p̃)
)
− p̃ | ≈ | acc(Bm)− conf(Bm) | = CE(Bm). (3.5.1.6)

It can be measured on a reliability diagram as the difference between the expected accuracy
curve and the ideal acc(Bm) = conf(Bm) line. The expected calibration error (ECE) quantifies
the calibration error of the full distribution as

ECE(x, f) = 1
M

M∑
m=1
| acc(Bm)− conf(Bm) |. (3.5.1.7)

The model is considered calibrated if ECE(x, f) = 0.
In practice, modifications were made to the previously described theory of reliability curves

and ECE. You may notice in Figure 3.4 that, instead of plotting accuracy and confidence, we
instead plot analogous target coverage and achieved coverage. Typically, a coverage value, p̄,
refers to a quantile of data points lying within ± p̄2 % of the median (50% quantile). Specifically, in
our setup, we use different uncertainty quantification methods (BBB, MCD, HMC, and DE) to
sample N different model weights for our INR, each set of weights corresponding to a different
model output. Given that each output corresponds to an image, for each pixel, (x, y), we have
a distribution of N predicted values, KN (x, y). Ideally, the median of the pixel distribution
would be equivalent to the ground truth pixel value, I(x, y). However, this is unrealistic to
expect in practice. Thus, we check whether the ground truth pixel lies within the predicted
pixel distribution quantile, Qn, specified by coverage value, p̄,

Q50− p̄
2

(
KN (x, y)

)
≤ I(x, y) ≤ Q50+ p̄

2

(
KN (x, y)

)
. (3.5.1.8)

If a model is perfectly calibrated, p̄% of reconstructed pixels distributions will contain the ground
truth pixel in their p̄%-th quantile, corresponding to the grey dashed line in Figure 3.4. Thus, model
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Figure 3.5: The ground truth image is plotted alongside different metrics for assessing the
reconstructed predicted distribution generated by an HMC INR model. From left to right, we show
the ground truth, predicted mean image, predicted variance image, mean squared error, coverage
quantile of each pixel, and negative log-likelihood of each pixel. Note that PSNR is calculated using
the ground truth and predicted mean image. In a real medical setting, the ground truth is unknown,
the doctor would be given the predicted mean image and the predicted variance image could be
provided as supplementary information to help the doctor reach a diagnosis. Further note that white
regions in the coverage image denote that the ground truth pixel value did not fall in the range of
the predicted distribution.

confidence can be seen as a pre-selected quantile for each pixel (target coverage), p, while accuracy is
the percentage of pixel distributions containing the ground truth that quantile (achieved coverage),

achieved coverage(I,KN , p̄) = 1
|X |

1
|Y|

∑
x∈X

∑
y∈Y

I
{
Q50− p̄

2

(
KN (x, y)

)
≤ I(x, y) ≤ Q50+ p̄

2

(
KN (x, y)

)}
.

(3.5.1.9)
The ECE is thus implemented as,

ECE(I,KN ) = 1
|P|

∑
p̄∈P
|achieved coverage(I,KN , p̄)− p̄| · i, (3.5.1.10)

where P is a finite set of percentages evenly spaced in [0, 1], separated by percentage interval
i << 1. The fifth image of Figure 3.5, plots the smallest quantile of each pixel containing the
corresponding ground truth pixel, for an example HMC reconstruction with N = 50. Note
that white regions indicate that the ground truth value does not fall within the minimum
and maximum predicted pixel values.

There is one final modification made in implementing the reliability curves, in order to effectively
assess model calibration. As described in Appendix C.1, the final layer of all the MLPs used for
the INR have a sigmoid activation, ensuring that the model output is in the range (0, 1). However,
the sigmoid function only approaches 0 and 1 in the infinite limit, meaning that in practice our
model will never output 0 or 1 exactly. However, our images contain a large percentage of pixels
with exactly 0 value, especially for noiseless artificial data, which in the context of medical imaging
is regions containing air and no tissue. This is problematic for calibration, since all of predicted
pixel values will be near-zero, but will not actually contain the ground truth value of 0. This is
illustrated by the orange reliability curve in Figure 3.4, for which only 40% of pixels contain the
ground truth in their full range of predicted pixel values, for an MCD model trained on 20 views
with N = 50. Our proposed solution to this issue is slightly widening the quantile range by adding
a negligible δ term. Thus, for coverage value p̄, we now check if the ground truth pixel lies in,

Q50− p̄
2

(
KN (x, y)

)
− δ ≤ I(x, y) ≤ Q50+ p̄

2

(
KN (x, y)

)
+ δ, (3.5.1.11)

where 0 < δ << 1. In this case, if our predicted pixel values are slightly larger than 0, the δ offset
can widen the quantile range to include 0, enabling these pixels to contribute to the achieved
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calibration (this also applies to pixels with exact value of 1). The improvement in using a delta

offset is illustrated by the blue reliability curve in Figure 3.4, which is much closer to the ideal grey

dashed line than the orange curve with δ. It should be noted that the value of δ is not assigned

arbitrarily, but instead optimized to minimize overall ECE. For too small a δ, the quantiles will

not be widened sufficiently to capture ground truth 0 pixels. However, for too large of δ, the

quantiles will be widened too much, reducing overall calibration, as achieved coverage is much

higher than target coverage for low coverage values. Thus, ECE as a function of δ is expected

to have a unique minima, as illustrated by the example in Figure 3.4.

For some of the experimental discussion, it must be mentioned that before implementing ECE,

a similar, but non-standard coverage metric was implemented. This metric, which we refer to

as coverage mean squared error (CMSE) is mathematically defined as,

CMSE(I,KN ) = 1
|P|

∑
p∈P

(achieved coverage(I,KN , p)− p)2, (3.5.1.12)

where P is a finite set of percentages evenly spaced in [0, 1]. It is analogous to ECE, but sums over

the square of the coverage errors, rather than the areas. Thus, CMSE can be thought of as a proxy

for ECE, but is not exactly the same, as the relative impact of larger calibration errors is reduced by

the fact that it is squared. Note that the CMSE was also implemented without the δ correction term.

3.5.2 Assessing Model Quality

All of these metrics provide different means of assessing model quality. PSNR quantifies image

reconstruction quality, coverage metrics such as ECE gauge the uncertainty calibration, and

NLL encapsulates both. Ideally, both image reconstruction and calibration quality are optimized,

meaning naively NLL would be the best metric. However, there is often a trade-off between

calibration and prediction quality. In particular, classificaton networks can overfit to NLL without

overfitting to 0/1 loss. Interestingly, this is typically beneficial to classification accuracy, at

the expense of calibration. Thus, for deep neural networks, overfitting to NLL manifests in

probabilistic error rather than reconstruction error [81].

Furthermore, while this work focuses on uncertainty quantification of INRs for medical imaging,

little prior work has addressed this problem. Most existing techniques only quantify reconstruction

PSNR. Hence, for fair comparison, we will assess and optimize our models primarily according

to PSNR. However, in the case of similarly performing models, we use NLL, CMSE, and ECE

as secondary selectors for the best model.

It should be noted that initial attempts at optimizing models according to coverage metrics

resulted in preference for the lowest capacity models possible. This indicates that optimal

performance according to coverage favors blurry image reconstruction, with as little certainty

as possible in the final image. This is to be expected for brain images with sparse edges, where

high-confidence, especially in an edge, results in a large calibration penalty.
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3.6 MLP Model Selection Procedures

In this section, we describe the model selection process used for each of the four types of uncertainty
quantification discussed in Section 2.2, for both the 5- and 20-view cases. Large hyperparameter
sweeps are used to find the optimal parameters for BBB and MCD. The best performing MCD
model is used as the base model for training DEs. Due to the high computational demands of
HMC, we did not have the time to run hyperparameter sweeps for this approach. However, we
developed metrics to assess HMC performance and convergence. Analyses of the trends and results
of these model selection experiments are reported in Sections 4.2-4.3.

3.6.1 Hardware, Software, and Contribution Notes

The following experiments were computationally intensive, requiring hundreds of compute hours
on parallelized graphical processing units (GPUs). Specifically, experiments were run on the ziz

GPU cluster of the University of Oxford Department of Statistics. This cluster consists of four GPU
nodes with 8 GPUs each, consisting of a mixture of GTX 1080, GTX 1080Ti, and GeForce RTX 2080
Ti cards. The project codebase was developed in Python, using Pytorch [82] to implement the NN
functionality and Blitz [83] for the the BNN functionality. Hamiltorch [84] was additionally used
to implement HMC. PhD candidate Bobby He started the project using the SIREN [63] codebase.
He added Hydra [85], Weights and Biases (W&B) [86], and Simple Linux Utility Resource

Management (SLURM) [87] functionality, so that experiments could be conducted efficiently on the
ziz cluster. He also implemented the base CT image reconstruction pipeline using INRs, metrics
(NLL and PSNR), and uncertainty quantification procedures (MCD, BBB, DE, and HMC). All
remaining work, such as further modifications and improvements to He’s work, the hyperparameter
sweep code, coverage metrics, integration of classical reconstruction approaches, and HMC
convergence metrics were implemented by the thesis author, who also conducted all experiments,
visualizations, and analysis of the results discussed in the thesis. Given that the project Github
repo has not yet been made publicly available, key project code was submitted with the thesis.

3.6.2 BBB and MCD

For both BBB and MCD, MLP design choices had a large effect on INR reconstruction performance.
Carefully designed hyperparameter sweeps were thus run to strategically search the MLP parameter
space for four different settings: (1) MCD 5-view, (2) MCD 20-view, (3) BBB 5-view, and (4)
BBB 20-view. This section presents a detailed discussion of the procedure used and choices made
in reaching the final MCD 20-views model which, as described in Section 4.5, is the overall best
performing final model across all four settings. Similar search pipelines and methodologies were
used in the remaining three cases, but discussion is omitted for the sake of conciseness.

The model selection process began with a coarse grid search to efficiently prune across the
wide range of possible parameter combinations. Specifically, we considerd model activation type,
depth, width, RFF embedding frequency Ω0, and dropout probability. Among these, activation
type was the only categorical parameter, using the five activation types of Figure 3.3: Tanh,
SoftPlus, Sine, SiLU, and ReLU. For the remaining parameters, this initial coarse grid search
was used to get a sense of orders of magnitude, for the sake of computational feasibility. We
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Figure 3.6: The ground truth images used in tuning and assessing our BBB, MCD, and DE models.
The five validation set images were used to optimized model hyperparameters, while test set images
were used to assess the finalized models.

swept over model depths of 3, 6, and 9; widths of 16, 64, 256, and 1024; and RFF Ω0’s of
1, 5, 10, and 15. Three values - 0.2, 0.5, and 0.8 - were considered for the final parameter,
dropout probability, which is specific to MCD. For BBB, we instead swept over the Gaussian
prior standard deviation (values 10, 100, and 1000)1 and KL factor (values 1e-10, 1e-5, and
1e-1)2. For these coarse grid searches, all networks were trained using the Adam optimizer
with no weight decay and the default learning rate of 3e-4. For each set of parameters, three
individual INRs were trained, one for each of the three validation images, Image #1-#3, shown
in Figure 3.63. All reported metrics are averaged across the three test images, in an effort to
ensure model generalization and prevent overfitting to a particular image. For both the 5- and
20-view experiments, 2,160 (2,512) models were trained and tested for the MCD (BBB) coarse
grid sweeps. This resulted in a total of 9,344 models trained and tested during these initial grid
searches. Since the performance metrics are calculated from a distribution of predictions, sampled
according to the uncertainty method, all hyperparameter sweeps used 50 prediction samples to
enable uncertainty quantification, mean output prediction, and metric calculation.

MCD 20-view coarse grid search sweep results are visualized in Figure 3.7, for the three
different metrics of interest: PSNR, NLL, and CMSE4. These visualizations, generated by W&B,
show that different MLP configurations perform best under each of the metrics. This is further
demonstrated quantitatively by the results presented in Tables 3.1 and 3.2. Table 3.1 contains
the relative importance of each model parameter in determining model performance for each
metric. The importances were calculated by W&B, via the relative feature importance of a random
forest trained with all the hyperparameter values as input and their corresponding metric value as
output. Table 3.2 contains the correlations of each hyperparameter value with model performance,

1We originally swept over BBB standard deviation (values 0.2, 0.5, and 0.8), which are more on par with
theoretical expectations. However, we found that increasing prior standard deviation significantly improved final
model performance.

2Given the added BBB had uncertainty hyperparameter, we reduced relative number of search values for the
remaining sweep parameters.

3Again, for the sake of computationally efficiency, only validation Images #1 and #2 were used for BBB.
4In retrospect, ECE would have been desired as a metric over CMSE. However, it was not being considered or

implemented at the time these hyperparameter sweeps were run. Given the similarities between CMSE and ECE,
described in Section 3.5.1, CMSE is treated as a proxy for ECE.
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Figure 3.7: Visualization of the MCD 20-view coarse grid search hyperparameter sweep, according
to three different metrics – PNSR, NLL, and CSME (averaged across three validation images).
These are interactive plots generated by W&B, which enabled us to explore optimal hyperparameter
configurations.
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Figure 3.8: Visualization of the three MCD 20-view fine Bayesian search hyperparameter sweeps,
for each activation function type – SiLU, Sine, and Tanh (averaged across five validation images).
These are interactive plots generated by W&B, which enabled us to explore optimal hyperparameter
configurations.
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Metric
Activation Function

Depth Width RFF Ω P(Dropout)
ReLU SiLU Sine Softplus Tanh

PSNR 0.017 0.035 0.063 0.053 0.034 0.116 0.316 0.134 0.231
NLL 0.000 0.022 0.001 0.092 0.001 0.049 0.125 0.030 0.678

CMSE 0.025 0.083 0.088 0.054 0.031 0.139 0.232 0.135 0.213

Table 3.1: Importance, reported by W&B, of different model parameters in determining model
performance according to each metric, for the 20-view MCD coarse grid hyperparameter sweep.
Importance values were determined by feature importance in a random forest, trained with the
hyperparameter values as input and the metric as the target output. Importance is a relative quantity,
with larger importance indicating the hyperparameter has a larger effect on model performance,
under the metric.

Metric
Activation Function

Depth Width RFF Ω P(Dropout)
ReLU SiLU Sine Softplus Tanh

PSNR -0.055 0.206 -0.070 -0.249 0.155 -0.240 0.130 -0.022 -0.470
NLL -0.052 0.034 -0.075 0.142 -0.045 0.100 0.228 -0.028 -0.084

CMSE -0.047 -0.076 0.244 0.115 -0.235 0.218 0.305 0.077 0.028

Table 3.2: Correlations, reported by W&B, of different model parameters with each model performance
metric, for the 20-view MCD coarse grid hyperparameter sweep. Since we aim to maximize PSNR,
positive correlation indicates that increasing or using the parameter improves model performance.
On the other hand, since we aim to minimize NLL and CMSE, negative correlation indicates
that increasing or using the parameter improves model performance. Parameters that improve
performance are highlight in green, while those that decrease performance are highlighted in red.

as calculated by W&B, according to each metric. Recall that the aim is to maximize PSNR while
minimizing NLL and CMSE. A positive correlation means that the presence or increased magnitude
of a hyperparameter contributes positively to PSNR, but negatively to NLL and CSME. For the
latter, negative correlations are desired. Using the interactive visualizations and quantitative
summaries, we gained insight as to how different parameters affected model performance in the
four uncertainty-view settings. An in-depth analysis of these trends is presented in Section 4.2.

For now, we conclude our discussion of methodology, with the second hyperparameter sweep –
a fine Bayesian search used to generate the final models. This Bayesian sweep leveraged a reduced
search space, informed by the first coarse grid search. It was found that Bayesian sweeps do not
perform well with categorical variables, so independent sweeps of ∼200 runs were performed for
each of the three best performing activation functions from the grid search. Since only 600 models
were trained in total in each uncertainty-view setting, all five validation images of Figure 3.6 were
used as the validation set, to improve model generalization ability. Further, AdamW was used
to optimize the models, with a weight decay hyperparameter added to the sweep. In the case of
MCD with 20-views, three sweeps were performed, one for each of the three activation functions:
Sine, SiLU, and Tanh. A log uniform distribution, in the range 1e-16 to 1e-1, was swept for the
weight decay, while uniform distributions U(min, max, q), where q is the discrete interval, were
generated and swept over for the remaining numerical parameters: depth ∈ U(2, 12, 1), width
∈ U(200, 1000, 100), Ω0 ∈ U(3, 15, 1), and p(dropout) ∈ U(0.1, 0.6, 0.1). The results of these
sweeps are visualized in Figure 3.8. The top performing model according to PSNR, across all
three Bayesian sweeps, was selected as the final MCD 20-view model, as reported in Section 4.5.
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3.6.3 Deep Ensembles

Given the robust and computationally intensive nature of DEs, we did not perform large-scale
hyperparameter sweeps, as was the case for BBB and MCD. As described in Section 2.2.3, DEs
combine the outputs of multiple base learner models to improve uncertainty calibration. Assuming
each base learner makes a reasonable prediction, even if not optimized, adding more base learners
should only maintain or improve uncertainty calibration. In order to create a DE of size M
(DE-M), the top-M performing models identified by the MCD hyperparameter sweeps were
used as base learners. If N total samples were desired for uncertainty quantification, each of
the MCD baselearners was sampled repeatedly to generate N

M predictions. These predictions
were pooled together to create a sample of size N , from which uncertainty was quantified, the
mean prediction generated, and model metrics calculated. In order to remain consistent with
the BBB and MCD experiments, we used N = 50.

3.6.4 Hamiltonian Monte Carlo

HMC was implemented via the Hamiltorch python package [84], using a leapfrog integrator and
No-U-Turn sampler [88]. There are two key challenges in optimizing HMC performance: (1) the
large number of hyperparameters to be tuned and (2) the large computational demands of each
HMC run5. This makes the previous large-scale hyperparameter sweep approaches unfeasible.
However, given the physical intuition behind HMC, described in Section 3.3.2, there are some
governing principles for hyperparameter selection. We used these intuitions to find hyperparameters
that enabled HMC to sample from the desired posterior. We also developed metrics to verify HMC
convergence, as discussed in Section 4.4. We next discuss the physical intuitions behind HMC.

The Hamiltorch HMC implementation contains several hyperparameters that govern HMC
convergence6: burn-in length (B), number of iterations after burn-in (T ), number of leapfrog
integrator steps per iteration (L), number of samples to save (N), mass matrix (M), step size
(∆t), and prior precision (τ). One of the most important parameters is the step-size, with smaller
∆t giving rise to better Hamilton’s equations solutions and, thus, better proposals. However, for
constant L, too small a step-size reduces HMC to a random walk, failing to explore the full extent
of the typical set (the main motivation for using HMC over other MCMC algorithms). Increasing
L, however, results in longer computation times. Hence, there is a trade-off between proposal
accuracy, amount of exploration, and computation time. To address this, the No-U-Turn sampler
is used to adaptively adjust step-size during burn-in, optimizing according to the selected number
of leap-frog steps L. The prior precision, τ , dictates the BNN parameter initializations. Given
that NNs are typically initialized with values in the range [−1, 1], τ ≥ 1 was used to ensure a
Gaussian variance smaller than 1. Testing a few different τ values, we found τ = 100 to work well
generally. In total, T ′ = 1500 HMC iterations were performed per run, with B = 500 burn-in
iterations. For consistency with the other approaches, 50 samples were saved from the eligible
T = 1000 HMC iterations. The mass matrix plays an important role in defining the system’s

5With our GPU setup, training a single BBB or MCD INR took on the order of a few minutes, as compared to
hours per HMC run.

6Note that all these HMC convergence hyperparameters only affect uncertainty modeling (like probability of
dropout for MCD and the KL factor as well as prior standard deviatiion of BBB). Beyond them, there still remain
the network hyperparameters – width, depth, RFF Ω0, and activation function – to be tuned.
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kinetic energy and initializing the momentum values, PW , at the beginning of each HMC iteration.
Given the interplay between the position and momentum parameters in the Hamiltonian and
leapfrog updates, its diagonal entries are typically initialized to have the same order of magnitude
of the position parameter values. Since the weights are initialized to small quantities around 0, we
simply set the mass matrix to have diagonal value 1. This was found to enable HMC convergence.
Finally, a predefined set of network hyperparameters (width= 256, depth= 3, activation=ReLU,
and RFF variance Ω0 = 10) was used for all HMC sweeps. This helped eliminate potentially
confounding factors in the search for the hypermeters that led to best HMC convergence.

Although we did find hyperparameters that enabled HMC convergence, convergence was not
guaraneteed for all runs. To assess convergence during an HMC run, we implemented the potential
scale reduction factor (PSRF) metric [89], commonly known as R̂. This metric has been used
in prior work [73] to assess HMC performance in sampling from large-scale BNN posteriors (i.e.
ImageNet network BNNs). The motivation behind R̂ is that, rather than performing one long
HMC run, several HMC chains are run simultaneously with different initializations. R̂ estimates
the ratio between the out-of-chain and the in-chain sample variance. Ideally, R̂ = 1, indicating that
all chains are sampling across the distribution in an un-correlated fashion. In practice, however,
different chains may fail to mix, causing the out-of-chain variance to be greater than the in-chain
variance and R̂ > 1. In more detail, R̂ is defined with respect to a scalar function, ϕ(W (t)), of
the HMC parameter samples

{
W

(t)
c | c ∈ {1, ..., C}, t ∈ {0, ..., T}

}
, where W (t)

c is the sample of
the cth chain at the tth iteration after burn-in. Letting ϕct , ϕ(W (t)

c ), R̂ is defined as
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In our experiments, we calculated R̂ for two scalar functions: ϕ(1)(W (t)) = W (t) and ϕ(2)(W (t)) =
f̂(W (t)), where f̂ is the function encoded by the INR. Calculating the R̂ of ϕ(1) enables us to
understand convergence in parameter space, while that of ϕ(2) enables us to understand convergence
in output image space. Analysis of these two metrics is presented for each run in Section 4.4.

Given the physics-inspired nature of the HMC, another simple check of HMC performance is via
the conservation of energy principle. Since HMC embeds the sampling problem into a Hamiltonian,
with kinetic and potential energy terms (and no outside forces), the system energy should remain
constant. Any large fluctuations in Hamiltonian likely indicate that the Metropolis-Hastings
acceptance probability step did not filter a bad proposal and HMC may no longer sample from
the typical set. Beyond this, the training loss of (3.3.1.1) is computed after each HMC iteration.
If the HMC is converging, this is expected to decrease. However, if the sampler has left the
typical set, training loss will likely increase. Finally, there are various guidelines for how high the
acceptance rate should be, ranging from 30 to 60%. In general, however, too high of an acceptance
rate indicates that the chain is not exploring enough, while too low of a rate generally indicates
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that the step-size is too large and HMC is frequently attempting to sample regions outside the
typical set. Thus, in addition to R̂, we also track Hamiltonian energy, proposed Hamiltonian
energy, training loss, and acceptance rate, to monitor the convergence of individual HMC chains.
It should also be noted that, due to the increased computation cost of HMC, we did not use any
of the validation or test set images for HMC assessment. Instead, we used a singular Shepp-Logan
phantom image, depicted as the ground truth image in Figure 3.5.
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4.1 Classic CT Reconstruction

We begin our experimental analysis by evaluating the performance of the classical reconstruction
algorithms described in Appendix B. For each method, the reported PSNR is the average
reconstruction PSNR across the five ground truth test images of Figure 3.6. Figure 4.1 shows the
PSNR as a function of view angle, for each of the five reconstruction methods. Also shown are the
values below which PSNR is usually considered unacceptable (20dB), at which reconstruction is
considered lossy (30dB), and above which has high quality (40dB). FBP has the worst performance,
which is particularly poor in the low-view regime (< 30 views). The iterative reconstruction
algorithms perform better. CGLS has slow convergence to high quality image reconstruction. EM,
SIRT, and SART all converge with far fewer views, achieving lossy compression with only ∼20
views. EM levels out and requires around 180 views to achieve high-quality reconstruction. SIRT
and SART have near identical performance, passing the high-quality reconstruction threshold
with only ∼75 views and SIRT performing slightly better for increased views.

Table 4.1 reports the PSNR values obtained for 5, 20, and 180 views. EM is the best performer
for 5 views, SART for 20, and SIRT for 180. However, while the performance of the three algorithms

35
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Figure 4.1: PSNR as a function of number of views for the classical reconstruction algorithms.

# Views FBP CGLS EM SART SIRT

5 7.68 16.38 21.39 21.12 21.12
20 17.35 21.85 30.22 31.98 31.97
180 36.74 38.6 40.46 42.51 42.76

Table 4.1: Classical reconstruction PSNR, averaged across the five validation set images, in the 5-,
20-, and 180-view cases. The best achieved PSNR for each view-# is bolded.

is similar for 5, SART and SIRT perform better than EM for larger number of views. In the low-
view regime, roughly an order of magnitude is required to achieve a 10dB improvement in average
PSNR. Figure 4.2 shows a reconstructed image for each of these algorithm-view combinations.
With 5 views the reconstruction algorithms are able to capture low-frequency object structure, but
the image would not be useful for medical diagnosis. With 20 views it is clear that the algorithms
are already capturing high-frequency components of the object, but the images have many artifacts.
By 180 views, the reconstructed images are nearly identical to the ground truth images of Figure 3.6,
with any discrepancies in PSNR due mostly to minor image reconstruction artifacts or imprecisions.

4.2 MCD & BBB Model Analysis

As discussed in Section 3.6.2, large hyperparameter sweeps were performed to tune the MCD
and BBB models in both the 5- and 20-view cases. From these sweeps, we can gain valuable
insights about the importance and robustness of different model parameters for training a CT
image reconstruction INR with uncertainty quantification.

4.2.1 MCD Hyperparameter Analysis

For MCD hyperparameter sweeps, metrics were averaged across the INR model reconstruction of
the first three validation set images of Figure 3.6. However, we also recorded the PSNR of the INRs
trained on each individual image. Box plots for the individual distributions of PSNR for validation
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Figure 4.2: Reconstructions by the five classical algorithms with different number of views on the
validation set images.

Images #1, #2, and #3 are shown in Figure 4.3. Ideally, PSNR should be consistent across the
three images. This is roughly the case (barring a few outlier points) for models using the Tanh,
SoftPlus, Sine, and Silu activation functions. Notice, however, that in all cases the distribution is
broadest for Image #3. This effect is exacerbated for models using the ReLU activation function,
for which PSNR of Image #3 ranges all the way from approximately 0dB to nearly the maximum
achieved PSNR, in both the 5- and 20-view cases. This indicates that ReLU in particular, but all
the all activation functions to some extent, struggle to capture features of Image #3.
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Figure 4.3: Reconstruction PSNR for Images #1-3 of Figure 4.3, for MCD INRs with different
activations and different numbers of views.

To understand what is unique about Image #3, the image reconstructions of the best overall
performing model are shown, for each activation function and 20-views, in Figure 4.4. It is apparent
that Sine and SiLU produce smoother images, while Tanh, Softplus, and ReLU produce spottier
images. Except for SoftPlus, all activation functions manage to capture low-frequency image
information and strong edges. However, all activations struggle to capture the small, low-intensity
ellipses in the center of Image #3. Overall, it is clear that, irrespective of activation function, 20-
views are insufficient to robustly capture fine CT image details. This individual image analysis also
suggests that the Sine activation performs the best for MCD, achieving the highest overall PSNR.
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Figure 4.4: Best image reconstructions obtained with each activation function, for 20-view MCD.

Figure 4.5 shows boxplots of the average PSNR distributions for MCD models trained in
the 5- and 20-view cases. Each column contains all the models trained with one of the five
activation functions, while each row shows how the PSNR distribution changes as a function of
hyperparameter – depth, width, probability of dropout, or RFF frequency Ω0. Ideally, PSNR
would be consistently large across hyperparameter values, indicating that the architecture is
robust and does not require much tuning. In practice, however, we find that the activation
functions are either consistent or high-performing, but not both. As previously mentioned, Sine
achieves the best overall PSNR. However, it is also the least consistent activation function, with
its highest performing models typically being outliers (indicated by diamonds in Figure 4.5).
Softplus, on the other extreme, is very consistent across hyperparameter values, but performs
consistently poorly. Tanh, Silu, and ReLU have less extreme variations. Their top models
perform slightly worse than the best Sine models, but they perform much more consistently across
hyperparameter values (ReLU is a bit inconsistent in width and probability of dropout). This
suggests that the Sine network is potentially the best reconstruction network, but significant
tuning (in terms of hyperparameter search) effort may be needed to achieve that solution. For
practitioners inclined to perform less tuning, the Tanh and SiLU networks may be a preferred
solution, due to their robustness and competitive top performance.

For ReLU, Tanh, SiLU, and Sine, it should also be noted that the PSNR distributions behave
similarly in the 5- and 20-view cases (with 5 views performing consistently worse than 20 views,
as expected) for all hyperparameters except RFF Ω0. This is consistent with recent results [60]
suggesting that RFF embeddings enable NNs to learn higher frequency image information. In
the 5-view case, where the available data is insufficient for the INR to confidently learn high-
frequency image features, performance is poor for increasing Ω0. In the 20-view case, the increased
data enables the network to learn higher frequency image components. However, because a
higher-frequency Ω0 is required to ensure the network can actually learn those frequencies, best
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performance tends to occur for larger Ω0. This effect can also be observed in Figure 4.6. For 5
views, the reconstruction is blurry for Ω0 = 1 but the network starts to learn smaller ellipses for
Ω0 = 5. By Ω0 = 10, however, the network is trying to learn higher-frequencies than the data
cannot specify, resulting in artifacts, which are exacerbated for Ω0 = 30. In the 20-view case, a
similar trend of reduced blurriness and increasingly sharper images can be seen between Ω0 = 1
an Ω0 = 10. However, the reconstructed images have much more recognizable details and less
artifacts than those obtained with 5 views. It is only for Ω0 = 30 that artifacts start to appear.
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Figure 4.5: Boxplots of the average PSNR of MCD models trained in the coarse grid search
hyperparameter sweep, for both 5 and 20 views. Each column corresponds to a different activation
function and each row to a sweep over one of the remaining hyperparameters - depth, width,
probability of dropout, and RFF frequency Ω0. Individual diamond points are outliers.
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Figure 4.6: MCD image reconstruction, in both the 5- and 20-view cases, for each activation
function and RFF frequency Ω0 value. Note that in the 5-view case, Ω0 = 5 enables the network
to learn low-frequency image features, without many artifacts. Smaller Ω0 causes the network to
produce overly simple output, whereas larger Ω0 induces high-frequency artifacts. In the 20-view
case, similar observations are made, but the optimal Ω0 = 10. In this case, the reconstruction has
higher frequencies without significant artifacts, for most activation functions.
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MCD Key Observations: MCD INRs struggle to capture low-intensity image details and
edges, even for 20-views. In this regime, the Sine activation function outperforms Tanh,
SoftPlus, SiLU, and ReLU according to PSNR, but is inconsistent across hyperparameter
configurations, indicating it may be difficult to tune. Tanh and SiLU achieve competitive
performance and are more robust with respect to hyperparameter tuning. Finally, as
view-# increases, the optimal RFF freuqency Ω0 also increases, suggesting that larger
frequencies enable the network to learn higher frequency image features.

4.2.2 BBB Hyperparameter Analysis

The BBB model selection analysis is presented in a similar fashion to that of MCD. The main
differences to MCD are that, in the BBB grid search, metrics are averaged over only the first two
validation set images; the width and RFF search spaces are reduced; and the uncertainty parameters
are the KL factor and Gaussian prior standard deviation (not probability of dropout). Figure 4.7
shows boxplots of average PSNR as a function of different hyperparameter values. Unlike MCD,
model performance is extremely consistent across activation functions for every hyperparameter,
except for width. We note that Tanh has some variation for RFF Ω0, following trends similar
to those discussed in the case of MCD. Overall, SiLU performs the best, with ReLU and Tanh
following closely behind. Interestingly, Sine performs the worst, failing to reach even 20db. However,
greater performance consistency across hyperparameter configurations comes at the price of weaker
top-performing models, which achieve lower PSNR values than those of MCD. Because the image
sets are not identical, these comparisons across approaches should be taken with some reservation.

To understand why there is so much variation in BBB performance as a function of width,
consider Figure 4.8, where the average PSNR obtained for each width is plotted as a function
of prior standard deviation. It can be seen that the PSNR values are extremely consistent for
each network width, across prior standard deviations. From a Bayesian perspective, the fact that
the prior does not affect inference suggests that the latter is dominated by the model likelihood.
However, mean performance decreases as a function of model width, indicating that the model
becomes increasingly misspecified for larger widths. Given the Gaussian assumptions made in
the variational inference specifications of BBB, described in Section 2.2.2, this suggests that the
true posterior distribution becomes less Gaussian as network width increases, and the variational
approximation deteriorates. When combined with the low performance of BBB relative to other
uncertainty quantification methods, reported in Table 4.4, this indicates that BBB may not be
well suited for uncertainty quantification of INRs in the medical imaging context.

BBB Key Observations: BBB INRs perform extremely consistently across all activations
for each hyperparameter, except width. The SiLU activation function performs best, with
ReLU and Tanh close behind. Sine performs the worst. BBB appears insensitive to RFF Ω0
for all activation functions except Tanh. For a given width, model performance as a function
of prior standard deviation is extremely consistent, indicating that the likelihood term
dominates the inference. Consistently decreasing performance with width then suggests
that the Gaussian approximation of the variational posterior is less accurate for models of
larger widths.
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Figure 4.7: Boxplots of the average PSNR of BBB models trained in the coarse grid search
hyperparameter sweep, for both 5 and 20 views. Each column corresponds to a different activation
function and each row to a sweep over one of the remaining hyperparameters - depth, width, RFF
Ω0, KL factor ξ, and prior standard deviation σ.
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Figure 4.8: Boxplots of average PSNR of BBB models of varying width for each value of prior
standard deviation σ, for both 5- and 20-view cases.

4.3 DE Performance Analysis

As described in Section 3.6.3, DEs of M base learners were created by combining the top-M
performing NNs, according to average PSNR. As reported in Section 4.5, the best MCD model
outperforms the best BBB model significantly, with at least a 2dB increase in PSNR, as well
as reduced NLL and ECE, for both the 5- and 20-view cases. Thus, we ensembled the top
MCD models produced by the second fine Bayesian hyperparameter sweeps of Section 3.6.2.
The parameterizations and performance of the 10 best performing models for both the 5- and
20-view cases are listed in Tables 4.2 and 4.3, respectively. Note that, in both cases, the model
architectures vary greatly across models. While the Sine activation function is fairly consistent,
the remaining parameters vary greatly. For example, in the 5-view case, model depths range
from 3 to 8, widths from 300 to 800, RFF Ω0 from 2 to 8, and probability of dropout (PD)
from 0.2 to 0.7, all with a variety of weight decays. These variations increase base learner
diversity well beyond different weight values.

DE combines varied base learners to improve uncertainty calibration. In principle, if all base
learners achieved the same PSNR, model performance should only increase (or plateau) and
variance should only decrease (or plateau) as more base-learners are added. In our case, however,
each new added base learner had a slightly lower PSNR on the validation set. To verify how
this affected model performance and calibration, we generated plots of each metric as a function

Rank Activation Depth Width RFF Ω0 PD W. Decay PSNR NLL ECE

1 Sine 4 800 2 0.4 0.001 26.15 -1.437 0.122
2 Sine 3 600 4 0.4 0.157 25.79 -1.799 0.008
3 Sine 3 600 8 0.7 0.366 25.76 -1.579 0.009
4 Sine 3 700 2 0.4 4.46e-4 25.75 -1.533 0.117
5 Sine 4 700 3 0.5 9.36e-4 25.72 -1.390 0.011
6 Sine 3 500 5 0.7 0.077 25.63 2.622 0.161
7 Sine 5 700 3 0.6 0.012 25.62 -1.149 0.123
8 Sine 3 500 5 0.7 0.068 25.62 -1.643 0.007
9 SiLU 8 300 3 0.2 2.68e-7 25.62 0.219 0.389
10 Sine 3 500 4 0.7 0.170 25.59 -1.79 0.083

Table 4.2: Top 10 performing MCD models and their performances, for the 5-view case. Models
are ranked by PSNR, but NLL and ECE are also reported.
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Rank Activation Depth Width RFF Ω0 PD W. Decay PSNR NLL ECE

1 Sine 3 400 9 0.4 2.06e-5 33.74 0.701 0.134
2 Sine 4 300 12 0.4 2.63e-7 33.41 1.076 0.149
3 Sine 3 500 8 0.5 0.006 33.37 -0.502 0.137
4 Sine 5 500 11 0.4 3.74e-6 33.29 -0.288 0.137
5 Sine 6 400 10 0.2 5.85e-6 33.28 4.654 0.152
6 Sine 6 500 8 0.2 1.117e-4 33.24 2.622 0.161
7 Sine 4 400 9 0.5 0.001 33.21 -0.798 0.143
8 Sine 3 500 10 0.5 2.53e-4 33.20 -0.716 0.129
9 Sine 5 500 11 0.2 7.87e-7 33.18 1.973 0.163
10 Sine 4 500 8 0.5 4.56e-5 33.17 -1.257 0.114

Table 4.3: Top 10 performing MCD models and their performances, for the 20-view case. Models
are ranked by PSNR, but NLL and ECE are also reported.

of # of DE base learners. As shown in Figure 4.9, both PSNR and MSE improve significantly
as the first base learners are added to the ensemble, but begin to worsen for larger ensembles.
Considering that models of worse PSNR are being added with each increase in # of base learners,
it is unsurprising that performance eventually degrades. However, ensembling never reduces
performance below that of using the single best model. NLL and ECE are more sensitive to the
number of base learners. NLL demonstrates the overall best performance gain as a function of
baselearners. ECE, however, does not change consistently with DE size, with large ensembles
sometimes even harming performance relative to the single best model. In all, it is clear that
ensembling improves model performance and calibration. However, larger ensembles have no gains
over smaller ensembles and are far more computationally expensive. Thus, for the final results
presented in Section 4.5, only ensembles of sizes 2, 5, and 10 are considered.
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Figure 4.9: PSNR, NLL, ECE, and MSE plotted as a function of the number of base-learners used
in DEs, for both the 5- and 20-view cases. Note that each added base learner performs slightly
worse in terms of image reconstruction quality than the network preceding it.

Figures 4.10 and 4.11 illustrate image reconstruction performance for the different ensemble
types on test set Image #3. In the 5-view case, DEs achieve impressive performance improvements,
with a PSNR increase of over 1.5dB for DE-5 and an ECE reduction of 0.011 for DE-2. In the
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Figure 4.10: Image reconstruction and calibration performance of the final DE models for test set
Image #3 and 5-views. Different columns show the results of different ensemble sizes, ranging from
1 to 10. Top row shows the reconstructed image, middle row the pixelwise coverage, and bottom
row the reliability curve.
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Figure 4.11: Image reconstruction and calibration performance of the final DE models for test set
Image #3 and 20-views. Different columns show the results of different ensemble sizes, ranging
from 1 to 10. Top row shows the reconstructed image, middle row the pixelwise coverage, and
bottom row the reliability curve.

20-view case the baseline is much better performing. Hence, although there are gains in PSNR,
these are not very noticeable in the reconstructed image. However, the improvements in calibration
are larger, with an ECE drop of 0.2 for DE-2 and a clear improvement in the image reliability curve.

DE Key Observations: Ensembling MCD architectures can improve image reconstruction
quality and model calibration. However, performance and calibration can decrease as
weaker models are added to the ensembles. We found that smaller ensemble sizes of 2,
5, and 10 achieved the best trade-off between improving performance while remaining
computationally feasible.
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4.4 HMC Run Analysis

In this section, we utilize the HMC convergence metrics discussed in Section 3.6.4 to analyze the
best performing HMC runs in both the 5- and 20-view cases. Note that all runs were performed
using 3 independent chains to learn the ground truth image of Figure 3.5.

4.4.1 20-View Best Performing Single-Chain

We begin by assessing the HMC run of best overall performance, according to the PSNR of a
single chain. Figure 4.13 shows the results produced by the each chain, as well as the combination
of all three chains, for 20 views. It is clear that chains 0 and 1 did not properly sample from
the BNN distribution, while chain 2 produced reasonable samples. These very different chain
performances can be predicted by monitoring the HMC convergence and performance metrics
tracked throughout the run, which are show in Figure 4.12.
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Figure 4.12: HMC convergence metrics for the top performing 20-view single-chain run. Top:
Hamiltonian energy. Center: acceptance rate (left) and training loss (right). Bottom: R̂ of both
network output (left) and parameters (right). The different post burn-in values of Hamiltonian
energy for the different chains, acceptance rates of 0 and 1 for chains 0 and 1, large training losses
for these chains, and large R̂ values for parameters and output, suggest that the HMC runs of chains
0 and 1 were unsuccessful.

The top figure shows the Hamiltonian and proposed Hamiltonian values for each chain, as a
function of run iteration. As described in Section 3.6.4, we expect the Hamiltonian value to remain
constant, by conservation of energy. The plots are split between the burn-in and post burn-in
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Figure 4.13: Results produced by three HMC chains, for the top performing 20-view single-chain
run, as well as their combination. Top: reconstructed image. Middle: pixelwise coverage. Bottom:
reliability curve. Chains 0 and 1 failed to produce samples from true BBN distribution.

periods. The large Hamiltonian oscillations during burn-in are caused by step-size modifications
by NUTS. In principle, if all chains were sampling from the same posterior distribution, we would
expect them to have similar overall Hamiltonian energy after burn-in, but vary in terms of relative
potential and kinetic energy values across samples, as they are traversing the typical set. In this
run, however, each chain has a distinct Hamiltonian energy after burn-in. The middle row of
the figure shows the acceptance rate and training loss for each iteration. The plot of acceptance
rates indicates that chains 0 and 1 are problematic, respectively rejecting and accepting every
proposal. In the full-rejection case of chain 0, each sample produced by HMC is identical to
the sample produced at the end of burn-in. This can be see in Figure 4.13, by the fact that
the ultimate output of chain 0 is simply noise. Meanwhile, the acceptance of every proposal
by chain 1 indicates that the leap-frog updates are not exploring the distribution space. Hence,
it is unsurprising that, in Figure 4.13, image reconstructed by chain 1 consists entirely of zero
values. The chain likely got trapped in a regime where weights only allow the network to produce
zero values. The constant, large training loss values of chains 0 and 1 further emphasize these
difficulties in sampling the true distribution. The third row of the figure shows the R̂ of the
output and network parameters as a function of training iteration. The fact that chains 0 and
1 did not properly sample from the distribution is reflected by the fact that both plots have
large values, with mean and median values far larger than 1.

4.4.2 20-View Best Performing Multi-Chain

We next assess a model in which all three chains sampled well from the distribution, but none
individually performed as well as the best single-chain. It should be noted that it was rare for
all three chains to sample well during our HMC runs. In general, only one generated reasonable
samples, if any. This can be attributed to our suboptimal HMC hyperparameters. Figure 4.14
shows that, unlike the previous example, all chains have similar Hamiltonian energies following
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Figure 4.14: HMC convergence metrics for the best performing 20-view multi-chain run. Top:
Hamiltonian energy. Center: acceptance rate (left) and training loss (right). Bottom: R̂ of both
network output (left) and parameters (right). The similar post burn-in values of Hamiltonian energy
for the different chains, acceptance rates that gradually decrease from 1 to 0, significant training
loss drops for all chains, and output R̂ values centered at 1, suggest that all chains were successful.

burn-in, all three chains both accept and reject proposals, all three training losses drop significantly
during the run, and the output R̂ distribution is closely centered to 1. Although there is only
one correct network output, several network parameterizations can achieve that same output,
due to the large numbers of symmetries in neural networks. This explains why the parameter
R̂ distribution is not distributed about the ideal value of 1. This does not necessarily raise
concerns in terms of image reconstruction performance.

The reconstructed image and calibration plots of all three HMC chains are presented in
Figure 4.15. It is apparent that all three chains sampled from the true BNN weight distribution
posterior. However, the reconstructed images seem to have high-frequency artifacts. This could be
attributed, in part, to the un-tuned RFF Ω0 model hyperparameter. Furthermore, when samples
from all three chains are combined, the output image quality improves, with an approximately
1-2dB increase in PSNR over each chain, and a significant improvement in model calibration.
Not only does ECE decrease by two orders of magnitude, but the reliability curve is significantly
improved over that of each individual chain. To understand this, we analyze the plots of Figure 4.16.

The top plot of the figure presents counts of the value of R̂ for the network output, at the
end of the HMC run. While HMC seems to be sampling well for most outputs (corresponding to
individual pixels in the reconstructed image), there are a non-negligible number of pixels with
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Figure 4.15: Results produced by three HMC chains, as well as their combination, for the top-
performing multi-chain 20-view run. Top: reconstructed image. Middle: pixelwise coverage. Bottom:
Reliability curve. All chains seem to produce samples from the true BBN distribution.
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Figure 4.17: Results produced by three HMC chains, as well as their combination, for the top-
performing 5-view multi-chain run. Top: reconstructed image. Middle: pixelwise coverage. Bottom:
Reliability curve. Chain 0 failed to produce samples from true BBN distribution.

R̂ > 1. This suggests the chains are not fully mixing and are sampling from distinct regimes
of the predictive posterior, p(f̂ |h). This behaviour is further illustrated by the t-SNE1 plot
shown in the left of the bottom row of the figure. While individual chains appear to sample
from a common component of the predictive posterior distribution at some point in the run,
they also appear to spend most iterations sampling different components of the distribution.
The t-SNE plot of R̂ values observed for the network parameters suggests that the three chains
sample networks with quite different weights. However, as mentioned above, this is not necessarily
a problem, since these different networks could produce a similar output. Overall, it appears
that, even though all chains managed to sample from the true BNN posterior and predictive
posterior, the chains did not fully mix. The fact that combining samples from the different chains
is equivalent to using samples from a single chain with better mixing, explains the improved
PSNR and calibration when the chains are combined.

4.4.3 5-View Best Performing Multi-Chain

All previous observations hold for the 5-view best performing HMC run. In this case, two out of
the three chains produced reasonable samples. The run results are shown in Figure 4.17, from
which it is apparent that chains 1 and 2 sampled well, but this was not the case for chain 0.
Combining the samples from chains 1 and 2 improved PSNR and calibration, analogously to the
previous three chain example. However, incorporating samples from chain 0 as well significantly
worsened performance relative to the best chains.

Since these results are similar to those discussed above, we omit further discussion for the
sake of brevity. We only present the HMC run t-SNE plots in Figure 4.18, to note that while the
parameter sample t-SNE manifolds are all quite distinct, the chain 1 and chain 2 output sample

1t-distributed stochastic neighbor embedding (t-SNE) [90, 91] is a non-linear dimensionality reduction technique
well suited for visualizing high-dimensional data in a low-dimensional space. Although our network has hundreds of
thousands of parameters and tens of thousands of outputs, t-SNE enables us to visualize the sampled output and
parameter space distributions in 2D.
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Figure 4.18: t-SNE visualizations of network output (left) and parameters (right) for the top-
performing 5-view multi-chain run.

t-SNE manifolds are far closer to one another than the chain 0 manifold. This reiterates the fact
that chains 1 and 2 are sampling from similar regions of the predictive posterior distribution.
Further note than the samples within chains 1 and 2 are much more scattered than those within
the chain 0 manifold. This indicates that chain 0 was trapped sampling in a local region of
the predictive posterior, likely due to too small of a step-size. In this case, we would expect
a very high acceptance rate for chain 0. Referring to the run acceptance metrics (not shown),
chain 0 did in fact have a constant acceptance rate of 1, analogous to chain 1 in Figure 4.12.
This all indicates that t-SNE plots of the output samples can provide insights on HMC performance.

HMC Key Observations: Hamiltonian energy, acceptance rate, training loss, output R̂,
and parameter R̂ are all informative quantities to track during a multi-chain BNN HMC
run, in order to gauge relative chain performance, chain mixing, and overall convergence.
t-SNE visualizations of the output and parameter samples can be used to obtain additional
insights. If all chains converge, the final output R̂ distribution should be tightly distributed
around 1, while final parameter R̂ will likely be broadly distributed. This can be attributed
to the wide range of symmetries that exist in NNs, which enable vastly different weight
parameterizations to produce the same model output. Finally, combining samples from
multiple chains that produce reasonable samples can further boost reconstructed image
quality and significantly improve calibration, by compensating for lack of mixing within
individual chains.

4.5 Uncertainty Quantification with INRs

The primary goal of this work was to develop a CT image reconstruction technique which not
only achieves good reconstruction quality, but also generates calibrated uncertainty estimates over
the reconstructed image. Several approaches were proposed to achieve this goal. Table 4.4
presents a comparison of their results.

Classical reconstruction results are incorporated as a baseline of comparison for PSNR, but
do not report uncertainty2. This work primarily focused on using INRs to learn the image
reconstruction mapping. Four different uncertainty quantification procedures – HMC, BBB, MCD,

2Note that a Bayesian formulation of the iterative reconstruction techniques can be used to generate uncertainty
values via HMC sampling on different prior distributions. This, however, is not standard in the field and was
not readily available in any existing open-source medical image reconstruction packages. Thus, we leave such a
comparison as future work.
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and DE – were implemented and assessed. As shown in the table, these methods consistently
outperformed the classical reconstruction techniques in terms of image quality, while producing
reasonably well calibrated uncertainty estimates. BBB was found to be the worst performing
uncertainty quantification approach, generally producing the poorest calibrated uncertainty
estimates and worse image reconstruction than classical techniques in the 20-view regime. MCD
consistently outperformed classical approaches and was generally better calibrated than BBB.
Ensembling over MCD base learners, however, was the most successful approach, outperforming
the best classical approach by ∼4dB in the 5-view case and ∼3dB in the 20-view case, as well as
achieving the lowest overall NLL and ECE values. Finally, despite computational challenges in
optimizing HMC, even the suboptimal HMC configurations performed quite well. In the 5-view
regime, HMC achieved a PSNR nearly equivalent to the average PSNR of the best DE. Although
relative performance was worse in the 20-view case, HMC still outperformed BBB.

One further remark regarding to Table 4.4 is that although the classical reconstruction
procedures did not use the validation set images as a validation set (since no hyperparameters
were tuned), image reconstruction quality still deteriorated in the test set. This indicates that the
test set data is actually more challenging than the validation set. Given that the performance
of BBB, MCD, and DEs did not significantly decline on the test set, we have strong reason to
believe that none of these approaches were over-fitted to the validation set.

Figures 4.19 and 4.20, visually illustrate the difference in the uncertainty quantification of
the different methods, for the 5- and 20-view cases respectively. Beginning with the 5-view case,
the mean predicted image was fairly blurry for all methods other than HMC, only capturing low-
frequency image components and exhibiting high uncertainty surrounding edges. HMC, however,
managed to capture image edges and high-frequency components very well, especially given the
limited data available. While some high-frequency artifacts are present, we attribute these to
the lack of optimization of the RFF Ω0 parameter and believe that further HMC tuning could
improve performance. This proves to be a promising next step for this work. Finally, note that all
reliability curves are very well calibrated in this 5-view case (after a δ-selection adjustment), except
for BBB. Similar trends are present in the 20-view case, but it is visually harder to distinguish
differences in the image output due to the higher quality of all reconstructions. In this case, the
mean reconstruction by HMC appears noisier than those of most other approaches.
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# Views Recon Type
Validation Set Test Set

PSNR NLL ECE PSNR NLL ECE

5

FBP 7.68 – – 5.15 – –
CGLS 16.38 – – 14.62 – –
EM 21.39 – – 19.88 – –

SART 21.12 – – 19.75 – –
SIRT 21.12 – – 21.12 – –

HMC∗ – – – 24.87∗ -1.616∗ 0.090∗

BBB 23.26 -1.190 0.152 22.52 0.138 0.203
MCD 26.15 -1.473 0.111 24.45 -1.572 0.083
DE-2 26.31 -1.730 0.091 24.49 -1.774 0.069
DE-5 26.44 -1.737 0.085 24.88 -1.751 0.067
DE-10 26.36 -2.226 0.075 24.67 -1.969 0.068

20

FBP 17.35 – – 15.71 – –
CGLS 21.85 – – 20.82 – –
EM 30.22 – – 29.11 – –

SIRT 31.98 – – 30.44 – –
SART 31.97 – – 30.45 – –
HMC∗ – – – 29.12∗ -1.676∗ 0.009∗

BBB 28.25 1.650 0.121 28.16 0.562 0.119
MCD 33.74 0.701 0.135 33.08 1.093 0.113
DE-2 33.96 0.005 0.136 33.44 -0.372 0.102
DE-5 34.31 -0.364 0.134 34.02 -0.625 0.101
DE-10 34.38 -0.529 0.131 33.86 -0.774 0.096

Table 4.4: INR accuracy and calibration results in both the 5- and 20-view cases are presented
for all four uncertainty quantification approaches. Classical approaches are separated by a dashed
line and do not uncertainty quantification. For BBB, MCD, and DEs results are presented as an
average over all five validation images and all five test set images, depicted in Figure 3.6. Due to
computational limitations, no validation set was used to tune optimal hyperparameters for HMC. A
star is placed next to all HMC results to further demarcate that HMC was trained on a singular
image, outside the validation and test sets. The best result for each metric – PSNR, NLL, and ECE
– is bolded in each subcategory.
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Figure 4.19: Validation results of all approaches in the 5-view case. From left to right: mean image
reconstruction, variance, MSE, coverage, and reliability diagram.
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Figure 4.20: Validation results of all approaches in the 20-view case. From left to right: mean
image reconstruction, variance, MSE, coverage, and reliability diagram.
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5
Conclusions

Medical imaging plays a crucial role in the modern healthcare system, enabling doctors to make
informed diagnoses based on the visualization of problematic organs and damaged tissues within
a patient. However, many imaging platforms, such as CT scanners, emit radiation which is
harmful to the patient and increase the risk of pathologies like cancer. This has created interest
in approaches that minimize radiation exposure, while still providing the doctor with sufficient
information for a proper diagnosis. In this work, we aimed to address both these challenges through
the introduction of a novel CT image reconstruction approach, based on INRs. We found that our
approach outperforms traditional image reconstruction quality in the low-measurement regime and
is able to provide reasonably well calibrated uncertainty estimates over its output. Calibration
is highly desirable, for several reasons. First, it addresses the lack-of-interpretability concerns
that could bar the use of NN-based approaches in healthcare. Given estimates of uncertainty,
doctors can better understand artifacts in the reconstructed images. Second, they provide a
novel source of information for doctors to make their diagnoses. If a generated image has a lot
of variance in a region of interest, for example an area where there appears to be a tumor, the
doctor could order another scan to be taken to ensure proper diagnosis before prescribing cancer
treatment. More generally, if the uncertainty estimates are accurate enough, it becomes possible
to even develop fully automated triage systems, where computers organize medical images by their
perceived complexity of analysis and can even assign them to healthcare providers of different
levels of specialization. Finally, calibrated uncertainty quantification is a first step towards active
learning. In future work, we aim to leverage these calibrated uncertainty estimates to inform
real-time optimized measurement collection, which would reduce overall radiation exposure. The
results above already show that, with just 20 equally spaced measurement views, the proposed
INR approach produces image reconstructions that meet the typical definition of acceptable in
the literature (PSNR > 30 dB) for the phantoms used in this work. Further work will need
to be done to ensure that reconstruction performance is similar on actual medical images and
that the algorithms are robust to noisy measurements.
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Although restricted to phantoms and noiseless data, this work presents the first large-scale
study of model parameterization for INRs with uncertainty quantification. We found that
MCD outperforms BBB and that hyperparameter selection plays an important role in model
performance. Specifically, for MCD we found that activation function choice has a large affect on
image reconstruction quality. As argued in the SIREN [63] work, the top performing MCD models
used the Sine activation. However, we found the Sine activation to be inconsistent in performance,
with Silu, Tanh, and Relu achieving similar, slightly lower performance, but greater consistency.
This implies that networks with Sine activations can require substantial further tuning effort,
during training. Further, we confirmed previous findings that RFF embeddings enable NNs to
learn high-frequency image components better [60]. However, we found that the frequency choice
used in the RFF embedding must be consistent with the amount of data used in training the
INR. Too low of an RFF Ω0 prohibits higher frequency learning, while too high of an RFF Ω0

results in high-frequency image artifacts. Furthermore, consistent with previous work [75], we
found that ensembling MCD architectures can improve image reconstruction quality and model
calibration, achieving significant improvements even for small numbers of base learners. Finally,
while we did not not optimize HMC hyperparameters, we implemented and verified the validity
of several metrics for assessing HMC convergence. We found Hamiltonian energy, acceptance
rate, training loss, and the R̂ distribution for model output to be informative of whether the
chain is sampling from the true BNN posterior. Despite previous discussion of parameter R̂ in
the BNN HMC literature [73], we found it to be less useful, given the symmetries that exist
in NN parameterizations. We further verified that t-SNE visualizations of the HMC output
samples provide insight into the relative sampling performance and mixing of different chains. We
found that combining samples from chains that produced reasonable samples but did not fully
mix slightly improved image reconstruction quality and drastically improved calibration. In all,
DEs of the top 5 or 10 performing MCD methods achieved the best results in terms of image
reconstruction and calibration. However, we have indications that, when subject to a search for
optimal hyperparameters, HMC may achieve better results, especially in lower data regimes.

Finally, while this work proposes the first use of uncertainty quantification for INRs, it is
not the first use case of INRs for CT image reconstruction. As recently as 2020, the CoIL
architecture was demonstrated to improve image reconstruction pipelines by learning a functional
form of the measurement sinogram [28]. This, however, still necessitates the use of classical image
reconstruction to reconstruct the ultimate desired image cross-section. It also lacks support for
uncertainty estimation, since the relation between the uncertainty of sinogram values and image
pixels is not immediately evident. Hence, training a network to produce calibrated estimates of
sinogram values does not automatically produce the estimates of pixel value uncertainty that are
much more important for most medical applications. Our approach instead proposes an end-to-end
image reconstruction pipeline, in which the network output is the desired image cross-section. This
is achieved by sampling the full image and performing a Radon transform in the network loss at
each training epoch. Given the small size of INRs, we found this to be computationally tractable.
The end-to-end approach is likely to increase performance and provides seamless support for
uncertainty estimation, as shown in this work. In future work, it would be interesting to compare
the performance of our end-to-end approach to that of the CoIL architecture, as well as consider
approaches to increase the training efficiency of the proposed end-to-end solution.
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A
X-Ray Matter Interactions

The typical energy of X-ray photons generated for medical CT is in the range 20-140keV.
X-rays in this energy range interact with matter via the photoelectric effect, the Compton
effect, and coherent scattering.

In the photoelectric effect, the X-ray photon relinquishes all its energy to liberate a lower-
energy, deep-shell electron in an atom. The X-ray photon thus ceases to exist, while the
liberated electron becomes a photoelectron. Meanwhile, outer-shell electrons fall inward to
fill the photoelectron’s vacancy in the atom, emitting a photon of characteristic radiation in the
process. Since the resultant characteristic radiation photon has less energy than the original X-ray
photon, it is attenuated by matter within the body and might not make it to the detector. The
probability of photoelectric absorption is proportional to the cube of the atomic number of the
matter, meaning that different tissues in the body will have different rates of x-ray absorption.

The Compton effect is similar to the photoelectric effect, except that the incoming X-ray
photon has far more energy than the binding energy of the electron. Thus, when the X-ray
photon strikes and frees the electron from the atom, it only loses a small amount of energy and
may be deflected at any angle from 0− 180◦. Low-energy X-ray photons typically backscatter,
whereas higher energy photons have a high probability of forward scattering. Because of the wide
deflection angle, such scattered photons provide little information about the interaction. Further,
the probability of a Compton interaction is purely based on the electron density of the material,
not the atomic number. Thus, Compton scattering does not help in distinguish different tissues
in the body and is typically seen as a source of noise in medical imaging.

The final interaction type, coherent or Rayleigh scattering, is the least important to CT
imaging. In this case, the incident X-ray has far lower energy than the electron binding energy,
meaning no electrons are liberated and ionization does not occur. Instead, the oscillating electric
field of the X-ray causes the electrons to oscillate and emit radiation of the same wavelength,
similarly to the operation of a radio station transmitter.
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B
Classic CT Reconstruction Algorithms
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In this appendix, we provide brief descriptions of the classical approaches implemented
in this work via the TomoPy Astra [77] software package. These algorithms are clinically
approved and widely used in medical imaging, serving as a basis of comparison for the meth-
ods developed in this work.

B.1 Filtered Back-Projection (FBP)

Filtered back-projection (FBP) [92] is an analytic algorithm which calculates a stable, dis-
cretized version of the inverse Radon transform. As the name implies, there are two key
steps: filtering and back-projection.

The forward-projection of (2.1.4.5) describes how X-rays passing through the object domain
create a measurement. In back-projection (BP), this measurement is integrated back along the
X-ray path across the object domain. This is done over all projection angles θ, using

f̂BP(x, y) =
∫
pθ(x cos θ + y sin θ) dθ (B.1.0.1)

to reconstruct the object attenuation coefficient image. As the number of projection angles,
θ, increases, the image reconstruction improves. However, as shown in Figure B.1, this back-
projection is insufficient to guarantee a clear image. While information about the low frequencies
of the object are captured in measurements at several view angles, that of high frequencies
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may only be captured in a few view-angles. Thus, the low frequencies are sampled far more
densely than the higher frequencies, resulting in a blurry image. This can be corrected by
suppressing the lower frequencies with filtering, by applying to each projective measurement, pθ(r),
the sequence of a Fourier transform (FFT), high-pass filter, and an inverse Fourier transform
(iFFT). While several high-pass filters can be used, a popular choice is the Ram-Lak filter,
which generates the filtered projective measurement

p̃θ(r) =
∫
Pθ(ω)|ω|ei2πωrdω, (B.1.0.2)

where Pθ(ω) is the Fourier transform of pθ(r) and |ω| the frequency response of the filter.
Performing back-projections of all the filtered projective measurements,

f̂FBP(x, y) =
∫
p̃θ(x cos θ + y sin θ) dθ, (B.1.0.3)

results in a sharper object attenuation coefficient image. Figure B.1 visualizes the difference in re-
construction performance of BP and FBP for increasing measurement view angles, θ. Although the
analytic FBP algorithm is fast and numerically stable, it suffers from poor resolution-noise trade-off.
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Figure B.1: Comparison of the reconstruction quality, as a function of the number of views, of the
BP (top) and FBP (bottom) algorithms.

B.2 Algebraic and Iterative Reconstruction

The reconstruction problem can be formulated as a system of linear equations

W ~f = ~p, (B.2.0.1)

where ~p is an m × 1 vector of the m projective measurement values in the sinogram; ~f is an
n× 1 vector of the n attenuation coefficient pixel values in the reconstruction image; and W is a,
typically sparse, m× n weight matrix representing the contribution of each of the m sinogram
values to each of the n image pixel values. Given the vector ~p, the goal is to solve for ~f . If
W were invertible, ~f would simply be W−1~p. However, because n is usually much larger than
m, the system of equations of (B.2.0.1) is underconstrained. In algebraic reconstruction, this
problem is addressed by using iterative algorithms that pose the reconstruction of ~f as the
solution of a constrained optimization problem,

~f ∗ = arg min
~f

|| ~p−W ~f ||, subject to fi ≥ 0 ∀i.
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Several families of iterative solvers can be used to solve this optimization, such as Landweber,
Krylov subspaces, and expectation maximization (EM). The key benefit of iterative methods
is that prior system knowledge can be integrated, via the cost function and initialization of
W . Their down-side is that they are not necessarily stable, may not converge, and are much
slower than analytic techniques, such as FBP.

B.3 Simultaneous Iterative Reconstruction Technique (SIRT)

The simultaneous iterative reconstruction technique (SIRT) [93, 94] is a Landweber iterative
method that updates the image reconstruction using all available sinogram projection data, ~p,
simultaneously. The optimization update at step k is defined as

~f (k+1) = ~f (k) + CWTR
(
~p−W ~f (k) ),

where R ∈ Rm×m is a diagonal matrix containing the inverse row sums, rii = (
∑n−1
j=0 wij)−1,

and C ∈ Rn×n is a diagonal matrix containing the inverse column sums, cii = (
∑m−1
i=0 wij)−1.

The weighted projection difference, R
(
~p −W ~f (k) ), corresponds to the inverse of the length

each X-rays passes through the volume. Shorter rays have a higher contribution, with the
weighting required to guarantee convergence. This difference is forward-passed back to the image
domain, using the weighted back-projection term, CWT , where it can be used to update the
reconstruction. These updates iteratively solve the problem

~f ∗ = arg min
~f

|| ~p−W ~f ||R = arg min
~f

(
~p−W ~f

)T
R
(
~p−W ~f

)
,

converging to a weighted least-squares solution, with weights given by the inverse row sums of W .

B.4 Simultaneous Algebraic Reconstruction Technique (SART)

The algebraic reconstruction technique (ART) [95] was one of the first proposed algebraic
iterative algorithms for CT image reconstruction. It is a Landweber technique almost identical to
the SIRT algorithm. However, a single projective measurement is used to update the reconstruction
image per update step. Generally, the ART algorithm reaches a solution much faster than SIRT,
but does not have stable convergence if the system of equations is inconsistent, for example
due to measurement noise.

The simultaneous algebraic reconstruction technique (SART) [96] was proposed in 1984, as
an improvement to ART, and is also a Landweber algebraic iterative algorithm. It combines the
reduced runtimes of ART with the improved convergence of SIRT, by using all the projective
measurements from a single view angle in each optimization iteration. The update of image
vector index i at step n is defined as

f
(n+1)
i = f

(n)
i + λn∑n−1

j=0 Wij

θnL+L∑
j=θnL+1

Wij
pj − p̂j∑m−1
g=0 Wgj

, (B.4.0.1)

where λn << 1 is a, potentially dynamic, relaxation parameter; θn is the (n mod N)th mea-
surement angle of the sinogram, assuming N total measurement angles; and L is the number
of projective measurements taken at each angle. SART typically converges to a good recon-
struction within a few iterations.
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B.5 Conjugate Gradient Least Squares (CGLS)

The conjugate gradient least squares (CGLS) [97] algorithm is a Krylov subspace iterative
method. Since it requires a positive-definite system matrix, the CT image reconstruction problem
is reformulated in terms of the set of normal equations

WTW ~f = WT ~p. (B.5.0.1)

Due to the positive-definiteness of WTW , there exists a set of conjugate normal vectors Q =
{~q1, ..., ~qn}, where ~qTi WTW~qj = 0, ∀ i 6= j ∈ (1, n). Since Q forms a basis for Rn, the image vector
~f can be rexpressed as a linear combination of these conjugate normal vectors,

~f =
n∑
i=1

αi~qi. (B.5.0.2)

Thus, solving for ~f becomes a problem of solving for the conjugate normal basis vector directions,
~qi, and their corresponding weights, αi. This can be achieved iteratively by expressing the problem
as a quadratic least-squares minimization of the function

L(~f) = 1
2
~fTWTW ~f − ~fTWT ~p, (B.5.0.3)

which has gradient ∇L(~f) = WTW ~f −WT ~p and a guaranteed unique minimizer because the
Hessian ∇2L(~f) = WTW is symmetric positive-definite. The name conjugate gradient least
squares comes from the fact that, in each iteration, a conjugate basis vector and its weight are
found by taking a gradient step in the direction that minimizes the least-squares function, L(~f), as

~f (k+1) = ~f (k) + αk~qk (B.5.0.4)

~rk = WT ~p−WTW ~f (k) (B.5.0.5)

~qk = ~rk −
∑
i<k

~qTi W
TW~rk

~qTi W
TW~qi

~qi (B.5.0.6)

αk = ~qTk ~rk
~qTkW

TW~qk
(B.5.0.7)

where ~rk is the residual at step k. Thus, the main difference between SIRT/SART and CGLS
is that the search direction in SIRT/SART is determined only by the projection difference at
that point, while in CGLS the search directions of all the previous iterations are also taken into
account. CGLS typically converges much faster than SIRT, but has a large memory footprint.

B.6 Expectation Maximization (EM)

The final classical approach to CT image reconstruction that we consider is a statistical iterative
method known as expectation maximization (EM) [98]. This technique explicitly encodes prior
knowledge about the X-ray physics at hand. Each projective measurement, pj is modeled
as a Poisson distribution,

pj ∼ Pj = Poisson(λj) =
λ
pj

j e
−λj

pj !
, (B.6.0.1)
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where the distribution mean λj = E[Pj ] is the function

λj =
∑
i

Wijfi (B.6.0.2)

of the probability Wi,j that an X-ray photon penetrating image pixel i was measured at detector
location j; and the underlying attenuation coefficient function f to reconstruct.

The measurement sinogram is modeled as the likelihood

P(~p|~f) =
∏
j

λ
pj

j e
−λj

pj !
=
∏
j

(
∑
iWijfi)pje−(

∑
i
Wijfi)

pj !
. (B.6.0.3)

The EM algorithm computes the maximum likelihood estimate of f ,

f̂ML = max
f

[
log
(
P(p|f)

)]
, (B.6.0.4)

by alternating between expectation and maximization steps. These can be combined into the
update-step

f̂
(k+1)
i = f̂

(k)
i∑
jWij

∑
j

Wijpj∑
iWij f̂

(k)
i

. (B.6.0.5)

The EM algorithm is computationally intensive, but guaranteed to converge to a local optimum of
the likelihood. Further, although a Poisson distribution was assumed for pj in this discussion,
further knowledge of the detector noise can be easily incorporated into the model.
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In this work, we investigate an alternative to the CT image reconstruction problem based
on artificial neural networks (ANNs). Frequently referred to as neural networks (NNs), these
are computational models that have recently achieved large popularity in machine learning.
This is, in large part, due to their strength for representation learning, enabling the automated
discovery, from raw data, of representations needed for classification and detection. Deep NNs have
several layers, learning data representations with multiple levels-of-abstraction, referred to as deep
learning [99]. Algorithmic advances (the development of backpropagation [100] and stochastic
gradient descent [101]), hardware improvements (the widespread availability of graphical processing
units (GPUs) [102]), and access to large scale datasets (such as the ImageNet dataset [103]), have
propelled deep learning beyond the academic sphere. Over the last decade, deep learning has
achieved state-of-the-art performance in several fields, including natural language processing [104],
speech recognition [105], and image recognition [106]. More recently, NNs have also proven useful
for other forms of learning, such as generative modeling [107] and reinforcement learning [108].
In this section, we will discuss the mathematical formulation of multilayer perceptron (MLP)
networks, to provide a notational basis for our discussion of one of the newest and most exciting
applications of NNs, implicit neural representations (INRs).

C.1 Neural Network Mathematical Formulation

A NN is a computational graph composed of neurons. As depicted in Figure C.1(a), a neuron
takes a vector, ~x = (x1, x2, ..., xn)T , and scalar bias, b, as input, outputting a scalar, z. This
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Figure C.1: Computation of a) a NN neuron, and b) a NN layer. In these graphs, Σ denotes a
summation and φ a non-linear activation function.

mapping consists of a linear combination of the inputs, with weights ~w = (w1, w2, ..., wn)T

and a non-linear activation function φ,

z = φ

(
b+

∑
n

wn · xn
)

= φ
(
b+ ~wT~x

)
. (C.1.0.1)

Modern NNs are composed by thousands of neurons, organized into network layers. Each
layer consists of m neurons, each with one output, zi. The value m is known as the network
width. Each neuron has its own set of weights, ~wi, and bias bi, which are used to compute
the output zi, according to

zi = φ

(
bi +

∑
l

Wil · xl
)

= φ
(
bi +WT

i ~x
)
. (C.1.0.2)

where W is a m× n matrix containing the layer weights, Wik is the weight between input k and
output i and ~b is a vector of dimension (m, 1) containing the biases bi. A NN layer is denoted fully-
connected if there is a weight between each of its inputs and outputs, i.e. the matrix W is dense.
While it is possible to design a NN layer in which each neuron has a different activation function,
only networks with a common activation function across neurons are considered in this work.

A NN is typically comprised of multiple layers, as illustrated in Figure C.2. When the layers
are fully connected, the network is denoted as a multilayer perceptron (MLP). The total number
of layers, k, is known as the network depth, resulting in the notion of ‘deep’ learning. In a
fully-connected network, each layer j takes as input the output vector of layer j − 1, ~z j−1,
and outputs the vector ~z j , using a distinct weights matrix, W j , and bias vector, ~b j . Thus,
the ith output of the jth layer is expressed as,

zji = φ

(
bji +

∑
n

W j
in · z

j−1
n

)
= φ

(
bji + (W j

i )T~z j−1). (C.1.0.3)

While it is possible to vary the width of each layer, we only consider networks of uniform width,
m. In this work, we consider MLPs that output a normalized scalar quantity, f̂ ∈ (0, 1). This is
guaranteed by feeding the last layer’s output into a single neuron with a sigmoid activation function,

σ(zi) = 1
1 + e−zi

= ezi
ezi + 1 , (C.1.0.4)
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Figure C.2: An MLP composed of k layers of width m.

depicted as the orange node in Figure C.2. As illustrated in Figure C.3, this function is centered
around σ(0) = 1

2 , approaching 1 as x → ∞ and −1 as x → −∞. The overall mapping
implemented by all the operations of Figure C.2 is denoted as f̂(~x,W ), where W = {W j , bj}kj=1

contains all network parameters.
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Figure C.3: Sigmoid function.

C.2 Neural Network Training and Prediction

While activation function type, network width, and network depth are all design choices, the
weights and biases of a NN must be learned in order for the network to perform useful computation.
Typically, NNs are trained in a supervised learning setting, in which the training data has labels,
i.e. it consists of input-output pairs, (x, f). A loss function, L, is used to assess the network
performance, by measuring the difference between the groundtruth output, f , and predicted
network output, f̂ , for each training example x. The mean-squared error (MSE),

LMSE =
∑
i

(fi − f̂(~xi,W ))2, (C.2.0.1)
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is a common loss function for regression tasks. The NN is trained by updating its weights and
biases so as to minimize this loss. This is achieved by performing gradient descent on this loss
with respect to the NN parameter weights and biases. Gradient descent is an iterative procedure,
where the network parameters are updated according to

W i+1 = W i − η∇WLMSE, (C.2.0.2)

where i is the gradient descent iteration, ∇WLMSE the gradient of the loss with respect to
parameters W and η a learning rate that controls the step size of each iteration. For neural
networks, the gradient descent updates can be efficiently calculated using an algorithm known
as backpropagation [100]. The optimization is iterative, typically converging towards a local
minima of the loss. Once the optimization has converged, the network weights are frozen and
the function f̂(~x,W ) can be used to predict labels for unlabeled data ~x.

C.2.1 Hyperparameter Sweeps

Hyperparameter sweeps can be used to test and optimize NN parameterization. The hyper-
parameter sweeps discussed in the following section were implemented with W&B, which offers
a variety of search strategies. Two search strategies were used: grid and Bayesian. In a grid
search a finite set of values is chosen per hyperparameter and every combination of parameters is
tested. This is ideal for understanding how individual parameters affect performance, but is not
computationally feasible for large or continuous parameter spaces. Bayesian search, alternatively,
enables search over large, continuous parameter spaces by narrowing the search space according
to a model goodness criterion, such as maximizing PSNR. This is achieved by using a Gaussian
process to model the relationship between parameters and the goodness metric and choosing
the parameters that maximize the probability of model improvement.
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In this appendix, we layout the different parameters we considered in designing our MLPs and
provide any known insights as to how they affect model performance. These insights informed
the hyperparameter sweeps described in the following section.

D.1 Width and Depth

The size of a neural network is determined by both its width (number of nodes per layer) and depth
(number of layers), as described in Appendix C. Universal approximation theorems [109] have been
derived in both the arbitrary-width [110, 111] and arbitrary-depth [112–114] cases, demonstrating
that NNs are theoretically guaranteed universal function approximators in the infinite limit. In
practice, however, neural networks have finite width and depth. Recent work has empirically
demonstrated and theoretically suggested that, in this regime, increased-depth networks generally
perform better than increased-width networks [115, 116]. It is also known that, while neural
networks are overparametrized relative to the amount of training data, this overparametrization is
key for their generalization ability [117, 118]. However, there are no exact guidelines on how to
choose the width or depth of a network. In this work, the best performing width and depth were
found empirically for each network, via the hyperparameter sweeps described in Section 3.6.

D.2 Fourier Feature Mappings

Random Fourier features (RFF) were first introduced in 2007 [119] as a means of accelerating
kernel methods. The key idea is to map the input data to a randomized low-dimensional
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feature space, while maintaining the kernel of the original data. Given input ~x ∈ Rn, the
RFF mapping takes the form

γRFF(~x) = [cos(2πB~x), sin(2πB~x)]T , (D.2.0.1)

where B is an m× n matrix, with each entry sampled from N (0,Ω2
0). The standard deviation,

Ω0, is a tuneable hyperparameter, but remains static after initialization – i.e. it is not modified
with NN weights during the MLP training. There exist other types of Fourier feature mappings,
such as positional encodings, in which

γPE(~x) = [..., cos(2πΩj/m0 ~x), sin(2πΩj/m0 ~x), ...]T , (D.2.0.2)

for j = 0, ...,m − 1.
In 2018, it was theoretically demonstrated that NNs can be approximated by kernel regression

via the neural tangent kernel (NTK) [118]. Using this intuition, in 2020, it was argued that
applying a simple Fourier feature mapping to input data enables MLPs to learn high-dimensional
functions rapidly, even in low-dimensional problem domains [60], making the technique particularly
well-suited for INRs. In fact, positional encodings have been shown to have key importance in the
success of NeRF [16] and Fourier feature mappings have been shown to boost the performance
of the CoIL network for medical image reconstruction [28]. In this work, all networks apply
an RFF mapping, γRFF, to the input data. The standard deviation, Ω0, is tuned among other
hyperparameters in the sweeps described in Section 3.6.

D.3 Activation Functions

Activation functions are key to the success of neural networks, transforming what would otherwise
be simple linear systems into complex, non-linear universal function representers. We performed
hyperparameter sweeps with five activations widely used in the MLP and INR literature – ReLU,
SiLU, Sine, SoftPlus, and Tanh. We now briefly review these activation functions, as well
as their use in deep learning.

The rectified linear unit (ReLU), plotted in blue in Figure 3.3, was introduced as early as the
1960s for visual feature extraction in hierarchical NNs [120]. The ReLU is defined as

ReLU(x) = max{0, x} , (D.3.0.1)

returning its input if greater than zero and otherwise returning zero. Despite its hard non-
linearity at zero, non-differentiability at zero, and vanishing gradient challenge [121], the ReLU
was shown in 2011 to enable better training than previously used activation functions, such as
Sigmoid and Tanh, by inducing sparse representations [122]. As of 2017, the ReLU was the
most popular activation function for deep NNs [123].

The sigmoid-weighted linear unit (SiLU), plotted in orange in Figure 3.3, is a specific instance
of the Swish activation function family and was proposed in 2017 as a continuous, ‘undershooting’
version of the ReLU [123]. The Swish family, parameterized by β, is defined as

Swishβ(x) = x · σ(βx) = x

1 + e−βx
, (D.3.0.2)
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where σ(x) is the sigmoid function. By setting β to different values in [0,∞), Swishβ non-
linearly interpolates smooth functions between the linear function and ReLU. In 2017, Swish was
empirically shown to outperform ReLU, a result theoretically attributed to its bounded, smooth,
and non-monotonic nature [123]. More recently, Swish has been shown to outperform both ReLU
and Sine in the context of CT image reconstruction via Automatic Integration (AutoInt) [67].
The SiLU is the specific instance of Swish where β = 1,

SiLU(x) = x · σ(x) = x

1 + e−x
. (D.3.0.3)

The Sine activation function, plotted in green in Figure 3.3, is the sinusoid

Sineω0 = sin(ω0 · x). (D.3.0.4)

In the 2020 SIREN paper [63], INRs with sinusoidal activation functions and random Fourier
features were empirically demonstrated to outperform ReLU-based INRs. Theoretically, it was
argued that these periodic activations are better suited to capturing naturally complex signals
and their derivatives. However, the performance of these activations depends strongly on the
choice of frequency, ω0, which needs to be tuned.

The SoftPlus activation function, plotted in red in Figure 3.3, has continuous and differentiable
form

Softplus(x) = ln(1 + ex). (D.3.0.5)

It was introduced in 2001 [124] as the primitive of the sigmoid function. It is primarily
used as a smooth approximation to the ReLU activation and to constrain to positive outputs,
since Softplus(x) ∈ (0,∞).

The hyperbolic tangent Tanh, plotted in purple in Figure 3.3, has form

Tanh(x) = ex − e−x

ex + e−x
, (D.3.0.6)

and is both differentiable and monotonic. It has a form similar to the sigmoid function, with
Tanh(x) = 2σ(2x)− 1, but lies in the range (-1,1) instead of (0,1), meaning it does not constrain
to positive values. Before the ReLU became popular, the sigmoid and Tanh were two of the most
common activation functions. Tanh was easier to train and typically outperformed the sigmoid
as an activation function. However, because these sigmoidal activation functions saturate for
large inputs, their derivatives vanish for these inputs, leading to slow convergence of learning
algorithms. This has motivated the increased use of ReLU-like activation functions [125], which
ameliorate the vanishing derivative problem.

D.4 Optimizer

As described in Section C.2, the weights and biases of a neural network are optimized by gradient
descent of the network loss with respect to its weights and biases. There are several possible
choices of optimizer, which implement different variations on gradient descent. The gradient
descent procedure of (C.2.0.2) is usually difficult to implement, because each iteration requires
the evaluation of the gradient of the loss of (C.2.0.1) over the entire training set. This is very
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inefficient in terms of the number of computations per parameter update. Stochastic gradient
descent (SGD) addresses this problem by using a subset of the training data per descent step.
This drastically improves optimization time, although a descent direction is not guaranteed at
each iteration. Empirically, SGD has proven to work quite well. Adaptive moment estimation
(Adam) [126] further improves on SGD’s convergence by adding a momentum component and
rescaling. Each weight and bias parameter has a unique, variable learning rate, dependent on
its gradient values in recent optimization iterations. Finally, adaptive moment estimation with
weight decay (Adam-W) [127] incorporates a weight decay regularization in the loss function.
This is an L2 penalty that reduces model complexity and improves generalization ability by
shrinking the weight vector. In this work, Adam and Adam-W are used to train the INR models,
with the default learning rate of 3e-4 and a tuneable weight decay term for Adam-W. Attempts at
tuning learning rate proved worse or of similar performance to using the default value.
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E.1 Peak Signal-to-Noise Ratio (PSNR)

Peak signal-to-noise ratio (PSNR) is a metric frequently used to quantify reconstruction quality
of images and videos. Given an m × n ground truth image I and a noisy reconstruction
image K, the PSNR (in dB) is defined as the ratio between the maximum pixel value of I
and the MSE between I and K,

PSNR(I,K) = 10 · log10

(
max(I)2

MSE(I,K)

)
where MSE(I,K) = 1

mn

m∑
i=1

n∑
j=1

[Iij −Kij ]2. (E.1.0.1)

The higher the PSNR, the better the reconstructed image matches the original. In the absence
of any noise, I and K are identical, MSE(I,K) = 0, and PSNR is infinite. For lossy images,
PSNR is typically between 30-50dB, with values over 40dB considered very good, and values
below 20dB considered unacceptable [128].

E.2 Negative Log Likelihood (NLL)

Negative log likelihood (NLL) is a commonly used metric of probabilistic model quality. In this
work, we assume an independent Gaussian model, where pixel i is sampled from a Gaussian
distribution of mean fi, the groundtruth pixel value, and variance σ2, estimated by the sample
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variance, σ̂2, of the network pixel responses

µ̂ = 1
|X × Y|

∑
x,y

f̂(x, y) (E.2.0.1)

σ̂2 = 1
|X × Y|

∑
x,y

(f̂(x, y)− µ̂)2. (E.2.0.2)

The NLL is the negative of the log-likelihood of the pixel values under this model, assum-
ing independent sampling,

NLL(f̂ , f) =
∑
i

(
1

2σ̂2 (f̂i − fi)2 + 1
2 log(2πσ̂2)

)
(E.2.0.3)

A good probabilistic model will maximize the likelihood. Thus, the NLL is minimized iff fi = f̂i ∀i.
Although NLL can be used to indirectly measure model calibration, recent work has shown

that there is a disconnect between NLL and accuracy. For example, classification neural networks
can overfit to NLL without overfitting to 0/1 loss. Surprisingly, this is beneficial to classification
accuracy, at the expense of well-modeled probabilities. Thus, for deep neural networks, overfitting
to NLL manifests in probabilistic error rather than classification error [81].



F
HMC Sampling Algorithm

Our goal in using HMC is to sample weight parameters, {W (1), ...,W (N)}, from the BNN weight
posterior, p(W |h). This problem is reformulated in terms of physics-inspired dynamics. These
dynamics are governed by Hamiltonian

H(W,PW ) = U(W ) + 1
2P

T
WM

−1PW , (F.0.0.1)

where W are the ‘position’ terms, PW are the ‘momentum’ terms, U(W ) = − ln p(W |h) is the
system potential energy, 1

2P
T
WM

−1PW is the system kinetic energy, and M is a symmetric positive
definite mass matrix. HMC starts by initializing parameters, W (0) ∼ N (0, 1

τ ), by sampling
from the Gaussian distribution of prior precision τ . At HMC iteration n, the parameters are
initialized to W (n)(0) = W (n) while the momentum is initialized by sampling from the normal
distribution P

(n)
W (0) ∼ N (0,M) of variance defined by the mass matrix. The leapfrog iterative

algorithm is then used to simulate system dynamics for time L∆t, where L is the number of
leapfrog steps and ∆t the step size. In each step, the leapfrog algorithm alternates between
momentum and position updates, using

P
(n)
W

(
t+ ∆t

2

)
= P

(n)
W (t)− ∆t

2 ∇U(W )|W=W (n)(t) (F.0.0.2)

W (n)(t+ ∆t) = W (n)(t) + ∆tM−1P
(n)
W

(
t+ ∆t

2

)
(F.0.0.3)

P
(n)
W (t+ ∆t) = P

(n)
W

(
t+ ∆t

2

)
− ∆t

2 ∇U(W )|W=W (n)(t+∆t), (F.0.0.4)

so as to solve Hamilton’s equations

dW

dt
= ∂H
∂PW

(F.0.0.5)

dPW
dt

= ∂H
∂W

. (F.0.0.6)

Since the leapfrog iterative algorithm is a discretized numerical approximation to the true integral,
the limit ∆t → 0 would be needed to solve Hamilton’s equations exactly. To correct for bad
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proposals from the leapfrog method, an HMC Metropolis-Hastings acceptance ratio is defined as

αHMC(W (n)(0),W (n)(L∆t)) = min
{

1, exp[−H(W (n)(L∆t), P (n)
W (L∆t))]

exp[−H(W (n)(0), P (n)
W (0))]

}
, (F.0.0.7)

where H is the Hamiltonian defined in (F.0.0.1). In result, the parameter sample returned by
iteration n, which is also the parameter initialization of iteration n + 1, is

W (n+1)(0)|W (n)(0),W (n)(L∆t) =
{
W (n)(L∆t), with probability αHMC(W (n)(0),W (n)(L∆t))
W (n)(0), otherwise

.

(F.0.0.8)
This process is repeated for T ′ HMC iterations. Since the prior weight initialization does not
usually lie within the typical set of the distribution, the samples initially output by HMC are
poor indicators of the typical set region. To address this problem, a burn-in period of B initial
iterations is defined and all burn-in samples are discarded after the algorithm is complete.
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