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ABSTRACT

QUANTUM STATE TOMOGRAPHY BACKGROUND [3,4]

EXTENDING QUANTUM STATE TOMOGRAPHY TO N-QUBITS

FUTURE WORK REFERENCES

FPGA MEASUREMENT SPEED-UP with Megan Yamoah

Quantum State Tomography (QST):
• reconstruction of the density matrix of a quantum state via 

measurements 
• critical to ensure the proper functionality of qubits and 

quantum operations in a quantum computer

Prior: 
• QST implementation for 1- and 2-qubit systems in our 

quantum processor [1]
In this work: 
• Extend QST to n-qubit systems and test different 

implementations.
• Use Field Programmable Gate Arrays (FPGAs) to speed up 

measurement process
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based modeling to the space of machine learning, deep learning in particular. A number of groups have

been using neural networks to learn the mappings from quantum processor output data to the quantum

state representation.678 Our current algorithm does not make use of these state of the art machine learning

techniques, which will be an area of potential exploration. Thus, in this work, a number of approaches will

be developed, tested, compared, and analyzed to determine the optimal means of analyzing our quantum

processor.

Method

The goal of this work is to extend and improve the group’s QST implementation. This will be done in

three parts: 1) extending the current tomography implementation to n-qubits, 2) speeding up the qubit

measurement process using an FPGA, and 3) implementing and testing different QST algorithms to see which

performs the best for our system. Before we go into this, we provide a brief overview of the pre-existing 1-qubit

(2-qubit is similar) QST implemented by EQuS postdoc, Morten Kjaergaard, based on the methodology used

in the masters and PhD theses of Julia Cramer9 and Jerry Chow10 (respectively).

First, a series of single shot data (in the |0i and |1i state), with respective labels, is loaded into the code

suite. The measurement process for the qubit consists of sending a microwave with a specific frequency to

the qubit and comparing it to the altered microwave that comes back from the qubit. Using the phase-shift

between the two signals, the measurement can be mapped onto the complex (I-Q) plane. An SVM is then

trained to discern between the ground and excited states. Next, a 0 to ⇡ Rabi oscillation is performed in

the quantum computer and the Rabi voltages are converted to Rabi probabilities, using the SVM. These

probabilities are then fitted to cosines, the fitting parameters of which can be used to find the Beta parameters

of our system. These Beta parameters tell us if our system has a greater tendency to measure in the excited

or ground state. For example, in the case of energy leakage, qubits that should be in the excited state might

occasionally decay to the ground state before measurement.

Now, the goal of QST is to reconstruct the density matrix, which can be expressed as

⇢1QB =
1

2
(hIiI + h�xi�x + h�yi�y + h�zi�z). (1)

6Bolduc, E., Knee, G. C., Gauger, E. M., & Leach, J. (2017). Projected gradient descent algorithms for quantum state
tomography. npj Quantum Information, 3(1), 44.

7Xin, T., Lu, S., Cao, N., Anikeeva, G., Lu, D., Li, J., ... & Zeng, B. (2018). Local-measurement-based quantum state
tomography via neural networks. arXiv preprint arXiv:1807.07445.

8Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., & Carleo, G. (2017). Many-body quantum state tomography
with neural networks. arXiv preprint arXiv:1703.05334.

9Cramer, J. 2012. Algorithmic speedup and multiplexed readout inscalable circuit QED. Delft University of Technology,
Delft, Netherlands.

10Chow, J. 2010. Quantum Information Processing with Superconducting Qubits. Yale University, New Haven, Connecticut.
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Figure 1: All three images correspond to an example single-qubit QST. Left: Measured values mapped onto the I-Q

plane. Center: An SVM trained to discern the ground from excited states. Right: Beta parameters found by fitting

cosines to Rabi oscillation probability curves.

Specifically, we must find the values hIi, h�xi, h�yi, and h�zi, where �x, �y, and �z correspond to the three

Pauli matrices and h�Ai = Tr(⇢1QBA). In order to find the density matrix for a given state, we will excite

our qubit to that state within the quantum computer and perform a series of measurements (anywhere from

hundreds to thousands). Measurements must be performed separately along the x, y, and z axes, since

different microwave pulses must be applied for each. Using the SVM, the measured values will be binned into

the |0i or |1i state, and we denote the number of values in each bin as p0 and p1 respectively. Using the

previously calculated Beta parameters, we can form the system of equations
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Thus, the unknown values mhIi, mh�xi, mh�yi, and mh�zi can be found simply by multiplying by the inverse

of the Beta parameter matrix.

Now that we have the measured expectation values, we would like to find the true expectation values for

the density matrix. This is done using Maximum Likelihood Estimation, with the following cost function

L =
X

P2{�x,�y,�z}

(mhP i � Tr(P⇢t))
2 (3)

where

⇢t =
T †T

Tr(T †T )
, T =

2

64
t0 0

t2 + it3 t1

3

75 (4)

such that ⇢t is the Cholesky decomposition of the density matrix. There are two main constraints on the form

of the density matrix in order to ensure it represents a true physical system: it must be positive semi-definite

and it must be normalizable. In our MLE, positive semi-definiteness is enforced by using the Cholesky
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decomposition (⇢t). Normalization is enforced by placing an additional constraint on the t values,

t20 + t21 + t22 + t23 = 1 (5)

After running MLE, the desired density matrix is found by using the ti values to construct ⇢t.

Figure 2: Left: Sample plot of single-qubit density matrix. Right: Sample plot of 2-qubit density matrix.

In order to extend this algorithm to larger qubit systems, one of the primary focuses of this work, the

functions used in the code must be generalized to account for multi-qubit entanglement. This poses a

computational complexity challenge, since the size of the density matrix is (# qubits)2. While the basic

structure for this was established with the development of the 2-qubit code, a clever system must be used

to extend the code to n-qubits, in order to minimize redundancies. For example, when performing 3-qubit

QST if all three qubits are measured along the x axis (an 0XXX 0 pulse), the values that would be found by

applying an 0III 0, 0IIX 0, 0IXI 0, 0IXX 0, 0XII 0, 0XIX 0, and 0XXI 0 pulse all fall naturally out of the system

of equations relating binned values to expectation measurements via Beta parameters, by extending Equation

(2). Furthermore, from a software engineering perspective, the QST is currently implemented as two seperate

scripts, one for 1-qubit and one for 2-qubit tomography. The overall code structure will be overhauled to

allow the user to simply select the number of qubits for the tomography by typing a value into an all-purpose

tomography function/class.

The next portion of the project will involve tackling a much more fundamental problem currently limiting

our system, the speed of the measurement itself (this work is done with fellow SuperUROP, Megan Yamoah).

Currently, when performing measurement, the qubit is excited and measured several hundreds of times.

However, the microwave signals are being sent directly to the control room, where the values are being mapped

onto the I-Q plane on a classical computer for each individual qubit measurement. This is an unnecessary

and slow process. We do not actually need to know which measurement was was binned into each of the

states, but rather how many total values were binned into each state (these are the p0 and p1 values of

Equation (2)). Thus, we will implement an FPGA to automatically combine the original microwave signal

and signal from the qubit, map the phase-shift onto the I-Q plane, and perform a rolling real-time binning

of the measurement data. In order to perform the binning, we will need to create an interface for users to
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Fidelity error metric:

Current tomography implementation is not 
scalable O(4n) !

• Optimize speed/accuracy of MLE
• Improve initial guess
• Find best minimizer

Maximum Likelihood Estimation is 
inadmissible! [5]

• Implement other QST methods
• Other statistical methods
• Machine learning
• Deep learning

• Comparison of Methods

• Test 3-qubit QST on experimental data
• Finish and extend FPGA integration
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