
Essays in the Philosophy of
Physics, Science, Metaphysics, and Epistemology

Francisca Sousa Pereira Cruz de Vasconcelos
Keble College

University of Oxford

Submitted in completion of the
Master of Studies in Philosophy of Physics

June 27th, 2022





Acknowledgements

There are several people and institutions I would like to thank, without whom these essays
would not have been possible.

First and foremost, I would like to thank the many incredible professors, of the Oxford Faculty
of Philosophy, that I had the chance to work with and learn from this year. In addition to
taking their courses, I was very grateful to have several 2-hour supervisions with Prof. Owen
Maroney, Prof. James Read, Dr. Sebastián Murgueitio Ramı́rez, and Prof. Oliver Pooley.
Beyond useful feedback for improving my essays, they broadened my horizons and helped me
navigate the dense philosophy literature. Largely because of their mentorship, my critical analysis
skills have improved substantially and I have been exposed to some of the coolest questions
at the forefront of physics and human knowledge!

Beyond the Oxford Philosophy Faculty, I would like to thank the many MIT professors, postdocs,
and graduate students who previously taught and supervised me. I would not be at Oxford, nor
able to pursue such an interesting degree, without their prior mentorship. I especially thank all
the amazing MIT philosophy faculty, who peaked my interests in the field as an undergraduate.

Institutionally, I would like to thank the Rhodes Trust for granting me the opportunity to
pursue this masters degree, through the Rhodes Scholarship. Without their monetary and general
support, I never would have been able to study in the UK. I also would like to thank Keble College,
for providing great accommodation and general resources in pursuing my studies.

Personally, I thank all my friends (old and new) for their constant encouragement. I would like
to give a special shout-out to the OUAFC Women’s Blues team for an incredible season, topped
off with a great Varsity victory – score early, score often, shoe the tabs, and bleed dark blue! I
also would like to acknowledge the Class of 2020 Rhodes Scholars, friends from the 2021 Statistics
MSc, my degree-mates Gal·la and Yoram, my HBAC flatmates, other friends from Keble College,
all the great OxCSML SIMPs, and my amazing friends from MIT undergrad. In continuing my
statistics research from last year (often as a break from all the philosophy!), I would like to thank
Professor Yee Whye Teh, Bobby He, and Nalini Singh for their collaboration and mentorship.

I would like to give an extra special thanks to Varsha Ramineni, for being such an amazing and
supportive friend, and to Christoher McDonald for being an incredible boyfriend who provided
endless love, support, encouragement, and fun times throughout this philosophy journey and my
time in Oxford. In the best and worst of times, he was always there to make me a ‘cuppa’.

Finalmente, quero agradecer a toda a minha famı́lia em Portugal por todo o amor e suporte.
I especially would like to thank my sister and parents, for their never-ending love, daily calls,
constant support, and endless encouragement. Without them, I would not be where or who
I am today. Obrigada a todos. .





Abstract

This work contains a compilation of four essays submitted for assessment in completion of the
Oxford Masters of Studies in Philosophy of Physics. The first essay, Rethinking Quantum Speedup
via the Quantum Singular Value Transform, is my personal favorite – asserting that a recent
breakthrough in quantum algorithms should reshape philosophical thoughts regarding the nature
of quantum speedup. More traditionally in the philosophy of physics, A Low-Entropy Big Bang
is Not Needed to Fry an Egg debates the emergence of a statistical mechanical ‘arrow of time’,
bolstering local branch theories over the Past Hypothesis. In an ontic structural realist approach
to the philosophy of science, “Relationships All the Way Down” draws inspiration from modern
physics and the history of science to argue that only relationships are fundamental and dissolves
the key concern of ‘relationships without relata’. Finally, in metaphysics and theory of knowledge,
The Open Past and Many-Worlds Presentism attacks our beliefs of a fixed, determined past
and supports the Many-Worlds Presentism ontology of time. These 4 essays were selected and
improved among 11 total essays written over the course of the degree: 5 in Philosophy of Physics,
3 in Philosophy of Science, and 3 in Metaphysics & Theory of Knowledge.
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The discovery and development of quantum computers have
raised a number of interesting philosophical issues. Perhaps
the most important issue is how to explain why quantum
computers appear to be faster than classical computers for
some computational tasks.

— Duwell (2018)
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2 1.1. Introduction

1.1 Introduction

Since the 1990s, quantum computer fabrication has progressed exponentially1. Unfortunately,
quantum algorithm design has not been as fruitful. Quantum computer scientists, lacking
fundamental knowledge of the source(s) of quantum speedup, have discovered only a handful of
quantum algorithms providing substantial speedup over classical counterparts. While compelling
evidence exists for a quantum speedup (Preskill, 2018), there is no rigorous proof that the class
of efficiently solvable quantum computational problems exceeds those efficiently solvable on
classical computers. Precise identification of quantum speedup could enable a proof of quantum
computational advantage2 and generalized framework for efficient quantum algorithm design.

In this work, I present and expose the limitations of three predominant theories for quantum
speedup: the Quantum Parallelism Thesis, Steane’s Interpretational View, and Bub’s Disjunctive
View. I also present a recent breakthrough in quantum algorithms – the Quantum Singular
Value Transform, or so-called “grand unification of quantum algorithms” – and argue that future
philosophy regarding quantum speedup must incorporate this algorithm. I conclude with a
discussion of the Quantum Singular Value Transform’s implications for existing philosophical
theories of quantum speedup. Specifically, I argue that it generalizes Bub’s Disjunctive View,
confirming Bub’s intuition for quantum speedup.

1.2 Potential Sources of Quantum Speedup

I begin by presenting three main philosophical arguments for quantum speedup: (1) the Quan-
tum Parallelism Thesis, (2) Steane’s Interpretational View, and (3) Bub’s Disjunctive View.
These views are contradictory and face distinct challenges in reconciling different observed
forms of quantum speedup.

1.2.1 The Quantum Parallelism Thesis

The earliest and most common intuition for quantum speedup is the Quantum Parallelism
Thesis (QPT). Inspired by their development of the first quantum algorithm, Deutsch and
Jozsa (1992) argued that quantum computers are more efficient than their classical counterparts
because they can compute multiple values of a function in a single step (Deutsch, 1998; Ekert
and Bouwmeester, 2000). In the original arguments, Deutsch held that the QPT is consistent
only with the many-worlds interpretation of quantum mechanics. However, this view has since
been dismissed by most (Duwell, 2007). For the remainder of this work I will focus on a modern,
interpretation-independent presentation of the QPT by Duwell (2018).

Duwell claims that evidence for the QPT comes from the Quantum Parallelism Process
(QPP), which is associated with several traditional, efficient quantum algorithms. Consider
a system of n + m qubits, where the first n qubits serve as an input register and the last m
qubits serve as an output register. Let |x⟩ describe the state of the n input qubits and |y⟩

1Schoelkopf’s Law predicts a Moore’s Law-like exponential scaling in quantum processor performance, which
has been empirically observed to-date (Devoret and Schoelkopf, 2013).

2I do not mean to suggest this would prove P ̸= NP, but a weaker claim that quantum computation provides
guaranteed speedup over classical computation for certain problems.
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describe the state of the m output qubits. Recall that applying a Hadmard, Ĥ, to every qubit
in |x⟩ achieves the uniform superposition state,

|x⟩ Ĥ⊗n

−−−→ 1√
2n

2n−1∑
x=0

|x⟩ . (1.1)

Now, suppose there exists unitary operator Ûf , such that

|x⟩ |y⟩ Ûf−−→ |x⟩ |f(x) ⊕ y⟩ , (1.2)

where f : {0, ..., 2n − 1} → {0, ..., 2m − 1} and ⊕ denotes addition modulo 2. Creating a uniform
superposition over |x⟩, setting |y⟩ = |0⟩, and applying Ûf computes f(x) for every x as

1√
2n

2n−1∑
x=0

|x⟩ |0⟩ Ûf−−→ 1√
2n

2n−1∑
x=0

|x⟩ |f(x)⟩ . (1.3)

Thus, in the QPP, a single operation evaluates a function over all possible inputs of interest.
Original arguments for the QPT (Deutsch, 1998; Ekert and Bouwmeester, 2000; Duwell, 2007)

attributed quantum speedup to simultaneous computation over all possible states. However, a
significant objection was raised by Steane (2003) and Bub (2010). Although the final state in
Equation 1.3 encodes every input x and its corresponding function evaluation f(x), at measurement
time the state will collapse to state |x′⟩ |f(x′)⟩ for a single input x′ and function evaluation f(x′).
Obtaining the full set of function evaluations still requires O(2n) system measurements, which
is on the same order of operations as classical computation3. Thus, QPP computed functions
are inaccessible on the basis of a single system measurement.

In light of Steane and Bub’s criticism, it appears unclear how the QPT would provide any
source of speedup. Duwell (2018), however, defends the QPT via the notion of distinguishability.
Given the algorithmic focus of this work, I present a reformulation of Duwell’s argument based
on standard quantum algorithm design intuition. Although exponential measurements are
needed to obtain the full set of function evaluations f(x) ∀x ∈ {0, ..., 2n − 1}, in practice,
efficient quantum algorithms are not designed to need all f(x) evaluations. Instead, quantum
algorithms leverage quantum interference to constructively interfere desired outcome amplitudes
and destructively interfere undesired outcome amplitudes. This can be achieved by the new
unitary operation Û ′

f that computes

1√
2n

2n−1∑
x=0

|x⟩ |0⟩
Û ′
f−−→

2n−1∑
x=0

αx |x⟩ |f(x)⟩ , (1.4)

where αx are amplitude coefficients such that
∑2n−1
x=0 |αx|2 = 1. Thus, the two key challenges in

designing efficient quantum algorithms are: (1) formulating the problem such that the desired
algorithm output can be encoded in O(1) states and (2) designing a Û ′

f which amplifies desired
output state amplitudes, αx, significantly more than undesired state amplitudes.

However, if speedup results from simultaneous computation, there is no clear distinction
between quantum computation and, say, bounded-error probabilistic computing or massively

3In the analogous classical computing setup, one would simply apply the function f to each x′ ∈ {0, ..., 2n − 1},
which is 2n operations of f(x).
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parallelized classical computation. In fact, it would be disappointing if the only computational
advantage provided by quantum computers was parallelization, because quantum computers would
amount essentially to specialized hardware, similar to classical graphical processing units (GPUs).
Steane and Bub argued that sheer parallelization does not enable quantum speedup, to which
Duwell responded that clever algorithm design must strategically leverage quantum interference.
However, neither Duwell nor the QPT provide concrete guidelines or insight for achieving this
crucial quantum interference – resulting in a lack of explanatory power.

1.2.2 Steane’s Interpretational View

Beyond the previously presented inaccessability argument, Steane (2003) argues that quantum
computers cannot acquire or manipulate classical information more efficiently than classical
computers. Specifically, Equation (1.3) gives a false impression of the performed amount of
computation, since computation cannot be measured by directly comparing numbers of operations
between distinct methods. For example, each step in binary search is not N

2 steps because of the
number of operations needed for linear search over the same N -element list. Steane also posits that
simultaneous computation of 2N operations should amount to O( 1

Exp(N) ) error rates, while quantum
computers empirically obtain O( 1

Poly(N) ) error rates. Finally, he argues that the unitary evolution
of quantum processes must imply that different quantum computational paths are not independent.

With all these criticisms of the QPT, Steane presents his own theory of quantum speedup:
Steane’s Interpretational View (SIV). Unlike the QPT’s view of quantum computers as large
processes exploiting massive parallelism, SIV argues that quantum computers are small systems,
which can exploit entanglement-generated correlations. Specifically, SIV proposes that speedup is
achieved for certain computational tasks because quantum computers do not need to represent
entities, but instead use entanglement to manipulate correlations between entities. For example,
in Equation (1.3), the correlation between x and f(x) is fully represented, even though the
values of f(x) are not (since at measurement only one f(x′) is sampled). Further, in Shor
(1994)’s algorithm, the extracted period is a correlation between values of f(x) – no physical
record of x remains once the algorithm terminates.

While appealing, there are problems with Steane’s view. Steane claims quantum interference
is only possible if the superposition terms are part of a single, isolated coherent-state (i.e. the
quantum computer is not entangled with the environment). In fact, this justifies why quantum
computers perform a single process, rather than many distinct simultaneous computations:

When we examine an efficient quantum algorithm such as Shor’s, we find that it is indeed
essential to the working of the algorithm that the evaluations of f(x) in superposition do not
individually have any subsequent influence on other parts of the universe. If they did, the resulting
entanglement would prevent the algorithm from working. (Steane, 2003)

However, it is unreasonable to expect that experimental quantum processors will ever be fully
isolated from the environment. For example, cryogenic cooling, which prevents thermal excitations
in superconducting quantum computers, can never reach 0K. Furthermore, fault tolerance only
mandates an error threshold, not elimination of error altogether. If Steane’s claim were correct, it
would be impossible to experimentally implement any algorithm and quantum computing would
be doomed to the same fate as analog computing – a belief few currently hold. In fact, small noisy
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quantum processors, of the present Noisy Intermediate-Scale Quantum (NISQ) era (Preskill, 2018),
have proven competitive with the world’s largest classical supercomputers for specific computational
tasks (Arute et al., 2019). Thus, Steane’s argument does not seem fully valid in light of modern
experimental results. Furthermore, like the QPT, SIV faces a lack of explanatory power. While
arguing that entanglement is key to quantum speedup, SIV does not provide specific guidance for
designing quantum algorithms which leverage said entanglement to outperform classical ones.

1.2.3 Bub’s Disjunctive View

Similar to Steane and unlike the QPT, Bub (2010) argues that quantum speedup is achieved
via fewer computations than classical computers. Unlike Steane, however, he believes quantum
speedup lies in the difference between classical and quantum logic. Specifically, Bub’s Disjunctive
View (BDV) posits that, while classical disjuncts can only be True or False in virtue of the
disjuncts’ truth values, quantum disjuncts can be True or False irrespective of the disjuncts’
values. Throughout the paper, Bub demonstrates how information processing in hidden-subgroup
type problems – i.e. Deutsch (1985), Simon (1997), and Shor (1994)’s algorithms – exploit the
non-Boolean logic represented by their Hilbert spaces’ projective geometry and subspace structure.
For the sake of space, I will only briefly explain BDV’s application to Simon’s and Shor’s algorithm,
instead elaborating upon the simplest algorithm – Deutsch’s.

1.2.3.1 BDV at a High-Level

Period-finding algorithms, such as Simon’s and Shor’s, split the domain of a periodic function, via a
period, into mutually exclusive and collectively exhaustive domain partitions. Thus, distinguishing
a period from all other periods becomes the problem of distinguishing one partition from all other
partitions. To determine a desired partition, a classical algorithm must evaluate the function for a
subset of input values – the number of computation steps growing exponentially with input size.

From the perspective of BDV, quantum period-finding algorithms represent alternative domain
partitions as Hilbert-space subspaces that are predominantly orthogonal, but may contain small
overlap regions. Each Hilbert subspace is spanned by the 2n quantum computational basis states,
a superposition of which is input to the quantum algorithm. After the period-finding algorithm
performs a suitable transformation, a computational basis state measurement can identify the
Hilbert subspace containing the state, identifying the desired partition and period. No function
evaluation is needed, but the algorithm may need to run multiple times if the state collapses
to an overlap region, making the measurement inconclusive.

1.2.3.2 BDV for Deutsch’s Algorithm

Deutsch’s XOR problem asks whether a Boolean function4 f : B → B, where B ∈ {0, 1}, is
“constant” (i.e. returns the same output for all inputs: f(0) = 0 and f(1) = 0 or f(0) = 1
and f(1) = 1) or “balanced” (i.e. returns 0 for half of the input domain and 1 for the other
half: f(0) = 0 and f(1) = 1 or f(0) = 1 and f(1) = 0). Classically, this requires querying
the oracle with both 0 and 1, then comparing the results. Meanwhile, Deutsch’s algorithm can

4Computed via a “black-box” oracle.



6 1.2. Potential Sources of Quantum Speedup

determine the function nature, 50% of the time, via a single measurement. Although traditionally
not considered a period-finding algorithm, Deutsch’s algorithm can be mapped into the same
BDV framework as Simon’s and Shor’s. As we will see, function nature (whether constant or
balanced) is mapped into Hilbert-space subspaces.

There are three steps in Deutsch’s algorithm: (1) initialize to |0⟩ |0⟩ in the computation basis, (2)
apply a Hadamard to the first qubit, and (3) apply an oracle unitary transformation, Ûf : |x⟩ |y⟩ →
|x⟩ |y ⊕ f(x)⟩, which implements Boolean function f . Dependent on the values of f(0) and f(1),

|0⟩ |0⟩ Ĥ⊗Î−−−→ 1√
2

(
|0⟩ + |1⟩

)
|0⟩ Ûf−−→ 1√

2
(

|0⟩ |f(0)⟩ + |1⟩ |f(1)⟩
)
, (1.5)

the system could be in one of four possible states:

|c1⟩ = 1√
2

(
|0⟩ |0⟩ + |1⟩ |0⟩

)
(1.6)

|c2⟩ = 1√
2

(
|0⟩ |1⟩ + |1⟩ |1⟩

)
(1.7)

|b1⟩ = 1√
2

(
|0⟩ |0⟩ + |1⟩ |1⟩

)
(1.8)

|b2⟩ = 1√
2

(
|0⟩ |1⟩ + |1⟩ |0⟩

)
, (1.9)

where constant f achieves |c1⟩ or |c2⟩ and balanced f achieves |b1⟩ or |b2⟩5.
Constant states |c1⟩, |c2⟩ and balanced states |b1⟩, |b2⟩ span two planes in the Hilbert space H2⊗

H2. Recall that Von Neumann (1932)’s probability calculus of quantum logic defines disjunction (∨)
as the closed span of the Hilbert subspaces’ union and conjunction (∧) as the intersection. Define
the constant plane Pc as the quantum logical disjunction of constant state projection operators,

Pc = P̂|c1⟩ ∨ P̂|c2⟩, (1.10)

where P̂|c1⟩ = |c1⟩ ⟨c1| and P̂|c2⟩ = |c2⟩ ⟨c2|. Similarly, define balanced plane Pb as

Pb = P̂|b1⟩ ∨ P̂|b2⟩, (1.11)

where P̂|b1⟩ = |b1⟩ ⟨b1| and P̂|b2⟩ = |b2⟩ ⟨b2|. Although the states |c1⟩, |c2⟩ are not orthogo-
nal to the states |b1⟩, |b2⟩, their disjunctions – the planes Pc and Pb – are orthogonal ex-
cept for an intersection ray,

I⃗c,b = Pb ∧ Pc = 1
2

(
|00⟩ + |01⟩ + |10⟩ + |11⟩

)
= 1√

2
(

|c1⟩ + |c2⟩
)

= 1√
2

(
|b1⟩ + |b2⟩

)
. (1.12)

This geometry is illustrated in Figure 1.1.
Moving to the Hadamard basis,

|+⟩ = Ĥ |0⟩ = 1√
2

(|0⟩ + |1⟩) (1.13)

|−⟩ = Ĥ |1⟩ = 1√
2

(|0⟩ − |1⟩), (1.14)

5I assume no errors, i.e. bit-flips, in all computations presented in this work.
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Figure 1.1: A geometrical representation of BDV for Deutsch’s algorithm. The constant plane Pc

is mostly orthogonal to the balanced Pb, except for an intersection ray I⃗c,b.

the intersection ray is simply |++⟩, the constant plane Pc = P̂|++⟩ ∨ P̂|+−⟩ is spanned by

|++⟩ = 1√
2

(|c1⟩ + |c2⟩) (1.15)

|+−⟩ = 1√
2

(|c1⟩ − |c2⟩), (1.16)

and the balanced plane Pb = P̂|++⟩ ∨ P̂|−−⟩ is spanned by

|++⟩ = 1√
2

(|b1⟩ + |b2⟩) (1.17)

|−−⟩ = 1√
2

(|b1⟩ − |b2⟩). (1.18)

If an observable with eigenstates {|++⟩ , |+−⟩ , |−+⟩ , |−−⟩}6 measures the algorithm output,
the system will collapse into the 3D subspace orthogonal to |−+⟩. Constant f obtains |++⟩ or
|+−⟩, with 50% probability of each outcome. Similarly, balanced f obtains |++⟩ or |−−⟩,
with 50% probability each. If |++⟩ obtains, we cannot distinguish whether f is constant
or balanced. However, if |+−⟩ obtains, f must be constant and if |−−⟩ obtains, f must be
balanced. Thus, with 50% probability, Deutsch’s algorithm determines whether f is constant
or balanced, via a single measurement.

1.2.3.3 BDV Limitations

BDV is arguably the most complex, most sophisticated, and least intuitive of the three presented
theories for quantum speedup. This is promising, since a useful theory of quantum speedup is
expected to be complex! BDV’s analysis of Deutsch’s algorithm demonstrates that quantum
speedup is explainable by the projective geometry of the system’s subspaces, defined using quantum
logic. BDV’s explanatory power is arguably greater than that of the QPT or SIV, especially in
application to Simon’s and Shor’s algorithms. However, it is still a limited theory.

Bub’s original BDV proposal primarily explains speedup for period-finding algorithms – i.e.
Shor’s and Simon’s. As described in Section 1.2.3, these algorithms require a domain partitioning,

6With a computational basis of Ẑ-eigenstates, this would amount to measurement of the X̂-observable.
Alternatively, in the computational basis, this is achieved by applying Ĥ, then measuring the Ẑ-observable.
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lending naturally to the geometric interpretation of BDV. Thus, one might wonder whether
BDV’s speedup explanation is too closely tied to the structure of period-finding problems and
inapplicable to other algorithm types. Bub attempts to bolster BDV’s merits by claiming that
Deutsch’s algorithm is distinct from Simon’s and Shor’s, but can still be mapped into the BDV
framework. However, Deutsch’s algorithms is one of the simplest quantum algorithms, yet still
requires non-trivial analysis to map into the BDV framework, as demonstrated in Section 1.2.3.2.
Therefore, Bub’s failure to mention or apply BDV to complex algorithms such as search or
Hamiltonian simulation is unsurprising.

While BDV seemingly has more explanatory power than the high-level QPT and SIV, Bub
appears unable to generalize BDV to all classes of quantum algorithms. For the remainder
of this work, I will discuss the Quantum Singular Value Transform algorithm and argue that
it generalizes BDV by mathematically encoding all quantum algorithms into Bub’s desired
projective Hilbert subspaces.

1.3 Inspiration from a Recent Algorithms Breakthrough

The Quantum Singular Value Transformation (QSVT) algorithm (Gilyén et al., 2019) instantiates
all known efficient quantum algorithms, via its tuneable parameterization, and was deemed The
Grand Unification of Quantum Algorithms (Martyn et al., 2021). In this section, I will (1) discuss
the state of quantum algorithms prior to the QSVT, (2) present the QSVT algorithm, (3) apply
the QSVT to search, and (4) explain how the QSVT unifies quantum algorithms.

1.3.1 Prior to QSVT

The first quantum algorithms – Deutsch and Jozsa (1992) and Bernstein and Vazirani (1997) –
solved toy problems to demonstrate a quantum computational advantage. More recent quantum
algorithms development, as described by Chuang (2020), addresses real-world problems and can
be categorized into three main types: (1) search, (2) simulation, and (3) factoring.

Search algorithms aim to find a specific (set of) target state(s). They are derived from
Grover (1996)’s algorithm and amplitude amplification, as formalized by (Bennett et al., 1997).
These models led to adiabatic computation (Farhi et al., 2000) and the fixed-point adiabatic
evolution algorithm (Dalzell et al., 2017). Simulation algorithms aim to approximate the evolution
and dynamics of quantum system Hamiltonians, e−iĤt. Originally, these algorithms consisted
of universal quantum simulators (Feynman, 2018; Lloyd, 1996). More recently, this has been
generalized to quantum random walks (Childs, 2009) and linear combinations of unitaries (Berry
et al., 2015). Factoring algorithms, in their most general form, aim to find a unitary’s eigenphases.
Shor (1994)’s algorithm applied period-finding to integer factorization, rendering RSA cryptography
obsolete. This was further generalized to quantum phase estimation (Cleve et al., 1998) and
solving linear systems of equations (Harrow et al., 2009). Although some recent algorithms, e.g.
variational quantum eigensolvers, exist outside these three pillars, their speedup is questionable.

Prior to the QSVT, there was little to no known relation between these distinct quantum
algorithm types. All algorithms achieved quantum speedup, but the means of achieving that
speedup varied by algorithm type. Each algorithm type could be distilled, more or less, to a distinct
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subroutine: factoring algorithms use a quantum phase-estimation subroutine, simulation algorithms
use a quantum walk subroutine, and search algorithms use a phase-estimation subroutine. However,
we expect a central source of quantum speed-up, meaning there should be some way to unify all these
algorithms. This unification, the so-called “grand unification,” was achieved recently by the QSVT.

1.3.2 The Quantum Singular Value Transformation

The QSVT algorithm’s key contribution was unifying and generalizing prior work on qubiti-
zation (Low and Chuang, 2019) and Quantum Signal Processing (QSP) (Low et al., 2016)
– enabling polynomial transformations of (rectangular) quantum sub-systems’ singular values.
Following Gilyén et al. (2019) and Martyn et al. (2021), I will provide brief descriptions of
qubitization, the QSP algorithm, and the QSVT algorithm.

1.3.2.1 Qubitization

Qubitization was proposed to robustly approximate the time-evolution operator e−iĤt, where
Ĥ = ΠÛΠ is a symmetric projected unitary encoded Hermitian operator. In place of Û , qubitization
finds a unitary Ŵ that is robust to repeated application leakage, enabling higher orders of Ĥ. Each
eigenvector of Ĥ splits into two eigenvectors of Ŵ , resulting in 2D subspaces isomorphic to a qubit
– hence “qubitization”. Specfically, assuming Ĥ has eigenvector |λ⟩ with corresponding eigenvalue
λ, qubitization finds Ŵ with eigenvectors |λ±⟩ and corresponding eigenvalues e±i arccos(λ), where
|λ⟩ is a superposition of |λ−⟩ and |λ+⟩. As demonstrated in the following section, QSP can apply
polynomial P to the spectrum of Ŵ , producing a projected unitary encoding, Û ′, of P(Ĥ).

1.3.2.2 The QSP Algorithm

Inspired by nuclear magnetic resonance pulse sequences for increasing image contrast (Wim-
peris, 1994; Minch, 1998; Vandersypen and Chuang, 2005; Wolfowicz and Morton, 2016), QSP
demonstrated that the gate sequence7,

Ûϕ⃗(θ) = eiϕ0Ẑ eiθX̂ eiϕ1Ẑ eiθX̂ eiϕ2Ẑ ... eiθX̂ eiϕdẐ = eiϕ0Ẑ
d∏
k=1

eiθX̂ eiϕkẐ , (1.19)

with unknown θ and tuneable ϕ⃗ = (ϕ0, ϕ1, ϕ2, ..., ϕd), can generate a rich set of quantum
unitary operations, Ûϕ⃗(θ). For each Ûϕ⃗(θ), sweeping over θ ∈ [−π, π] results in a function
of |0⟩ → |0⟩ transition probabilities,

Pϕ⃗(θ) = | ⟨0| Ûϕ⃗(θ) |0⟩ |2. (1.20)

Modifying pulse sequence values of ϕ⃗ realizes different transition probability functions Pϕ⃗.
Furthermore, letting θ = −2 cos−1(a) with a ∈ [−1, 1], then

eiθX̂ = Ŵ (a) =

 a i
√

1 − a2

i
√

1 − a2 a

 . (1.21)

7We use standard notation: X̂ is Pauli-X, Ŷ is Pauli-Y, Ẑ is Pauli-Z, and Î is identity.
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Plugging this back into Equation (1.19), QSP proves the existence of a set of (calculable)
QSP angles φ⃗, such that

Ûφ⃗(a) = eiφ0Ẑ
d∏
k=1

Ŵ (a) eiφkẐ =

 P(a) iQ(a)
√

1 − a2

iQ(a)
√

1 − a2 P∗(a)

 (1.22)

for any polynomials P(a) and Q(a), subject to a few minor constraints8. Thus, QSP systematically
transforms quantum states according to nearly arbitrary polynomial functions of degree d, using
O(d) elementary unitary quantum operations. This result can be extended to multi-qubit systems,
using block-encodings of square matrices. However, we will jump straight to the QSVT, since
it generalizes to rectangular block-matrices.

1.3.2.3 The QSVT Algorithm

The QSVT uses QSP sequences to polynomially transform singular values of a (possibly rectangular)
matrix A9 block encoded into unitary matrix Û ,

Û =

A .

. .

 . (1.23)

Every m×n matrix A can be decomposed by the Singular Value Decomposition (SVD), defined as,

A = ŴΣΣV̂ †
Σ, (1.24)

where ŴΣ and V̂Σ are unitary matrices and Σ is a (possibly rectangular) diagonal matrix
containing non-negative, real singular values {σk}. The column vectors of ŴΣ and V̂Σ, denoted
|wk⟩ and |vk⟩, form orthonormal bases. The so-called left singular vectors |wk⟩ span the left
singular vector space, while right singular vectors |vk⟩ span the right singular vector space.
Thus, A is alternatively expressed as

A =
∑
k

σk |wk⟩ ⟨vk| . (1.25)

Utilizing Equation (1.23)’s block-encoding, define projectors

Π̂ :=
∑
k

|vk⟩ ⟨vk| (1.26)

Π̂′ :=
∑
k

|wk⟩ ⟨wk| (1.27)

locating A in Û ,

A = Π̂′ÛΠ̂. (1.28)

In other words, Π̂ selects the rows and Π̂′ selects the columns of Û encoding A. As in qubitization,
Π̂ and Π̂′ identify two distinct Hilbert subspaces relevant to A, namely the left and right singular

8A given φ⃗ = (φ0, φ1, φ2, ..., φd) can only achieve functions of the form deg(P) ≤ d, deg(Q) ≤ d− 1, P with
parity d mod 2, Q with parity (d− 1) mod 2, and |P|2 + (1 − a2)|Q|2 = 1

9Boldface notation is used to distinguish non-unitary, rectangular matrices.
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Figure 1.2: Implementation of the CΠ̂NOT gate.

vector spaces. Every singular value σk defines a plane by {|vk⟩ ,
∣∣v⊥
k

〉
} and another by {|wk⟩ ,

∣∣w⊥
k

〉
}.

The key QSVT insight is that Û and Û† perform rotations between these two planes as:

Û : {|vk⟩ ,
∣∣v⊥
k

〉
} → {|wk⟩ ,

∣∣w⊥
k

〉
} (1.29)

Û† : {|wk⟩ ,
∣∣w⊥
k

〉
} → {|vk⟩ ,

∣∣v⊥
k

〉
}. (1.30)

Thus, interleaving Û and Û† with controlled phase-shift operations enables polynomial oper-
ations on A’s singular values, σk. Specifically, for odd polynomial10 P(x), there exists a
ϕ⃗ = {ϕ1, ..., ϕd}, with odd d, such that

Ûϕ⃗ = Π̂′
ϕ1
Û

(d−1)/2∏
k=1

Π̂ϕ2k Û
†Π̂′

ϕ2k+1
Û =

P(A) .

. .

 . (1.31)

P(A) is the polynomial transform of A’s singular values,

P(A) =
∑
k

P(σk) |wk⟩ ⟨vk| = ŴΣP(Σ)V̂ †
Σ, (1.32)

and Π̂ϕ and Π̂′
ϕ are projector controlled phase-shift operations,

Π̂ϕ := ei2ϕΠ̂ (1.33)

Π̂′
ϕ := ei2ϕΠ̂′

, (1.34)

imparting phase ei2ϕ to the subspace determined by Π̂ or Π̂′, respectively. As illustrated in
Figure 1.2, Π̂ϕ (and similarly Π̂′

ϕ) can be implemented in a quantum circuit with two projector
controlled-NOT gates (aka CΠ̂NOT) and a single-qubit Z-rotation by angle ϕ (e−iϕẐ).

1.3.3 Search via the QSVT

As explained by Gilyén et al. (2019) and Martyn et al. (2021), QSVT can be applied to the
problem of search. While Grover (1996)’s algorithm was the first proposed efficient quantum
search algorithm, it proved a limiting case of the oblivious fixed-point amplitude amplification
(OFPAA) search algorithm (Dalzell et al., 2017). OFPAA aims to find winner state |m⟩ ∈
{|1⟩ , ..., |N⟩}, using unitary oracle

Ûm |j⟩ = (−1)δj,m |j⟩ =
{

|j⟩ , |j⟩ ≠ |m⟩
− |j⟩ , |j⟩ = |m⟩

, (1.35)

10A similar expression exists for even polynomials, with even d.
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Figure 1.3: Qubitization maps search into two concentric Bloch spheres. QSVT generates circuit
Û

(Θ)
ϕ⃗

, which maps initial state |ψ0⟩ to desired state |m⟩. [Inspired by Martyn et al. (2021)’s Fig.2]

which applies a phase-flip to |m⟩. The QSVT OFPAA circuit is initialized to the uniform superposi-
tion state,

|ψ0⟩ = Ĥ⊗N |0⟩⊗N = 1√
N

N∑
j=1

|j⟩ = 1√
N

∑
j ̸=m

|j⟩ + 1√
N

|m⟩ , (1.36)

which is nearly orthogonal to |m⟩. For arbitrary circuit Ĉ, denote the overlap between states Ĉ |ψ0⟩
and |m⟩ as

a = ⟨m| Ĉ |ψ0⟩ . (1.37)

For the circuit initialization Ĉ = Î, a = 1√
N

. Thus, OFPAA aims to find the circuit Ĉ = Ûϕ⃗

that amplifies |m⟩’s amplitude, by mapping |ψ0⟩ to |m⟩,

| ⟨m| Ûϕ⃗ |ψ0⟩ |2 = |a|2 → 1. (1.38)

Qubitization reduces a potentially multi-qubit search problem to a simple 2D Hilbert subspace
by expressing Equation (1.36)’s superposition of non-winner states as a single, normalized
state perpendicular to |m⟩, ∣∣m⊥〉

= 1
N

(
Î − |m⟩ ⟨m|

)
|ψ0⟩ , (1.39)

where N is a normalization factor. Thus, defining

|ψ0⟩ = a |m⟩ +
√

1 − a2
∣∣m⊥〉

, (1.40)

and orthogonal state ∣∣ψ⊥
0

〉
=

√
1 − a2 |m⟩ − a

∣∣m⊥〉
. (1.41)
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Figure 1.4: The sign function Θ(a) is approximated by the QSVT as odd-polynomial PΘ(a),
mapping the block-encoding’s eigenvalue |a|2 → 1, for search. [Inspired by Martyn et al. (2021)’s
Fig.6]

As illustrated in Figure 1.3, the spaces spanned by {|ψ0⟩ ,
∣∣ψ⊥

0
〉
} and {|m⟩ ,

∣∣m⊥〉
} form two

concentric Bloch spheres. Furthermore, the ψ0-basis to m-basis unitary mapping is defined as

Û = a
(

|m⟩ ⟨ψ0| −
∣∣m⊥〉 〈

ψ⊥
0

∣∣ )
+

√
1 − a2

(
|m⟩

〈
ψ⊥

0
∣∣ +

∣∣m⊥〉
⟨ψ0|

)
, (1.42)

expressed in matrix form11 as,

Û =


|ψ0⟩

∣∣ψ⊥
0

〉
|m⟩ a

√
1 − a2∣∣m⊥〉 √

1 − a2 −a

. (1.43)

Û block-encodes matrix

A = Π̂(m)ÛΠ̂(ψ0) = |m⟩ ⟨m| Û |ψ0⟩ ⟨ψ0| = a |m⟩ ⟨ψ0| , (1.44)

with left singular vector |m⟩, right singular vector |ψ0⟩, singular value a, and projectors Π̂(m) =
|m⟩ ⟨m|, Π̂(ψ0) = |ψ0⟩ ⟨ψ0|. Π̂(m)

ϕ and Π̂(ψ0)
ϕ are constructed from gates: e−iϕẐ , CΠ̂(m)NOT,

and CΠ̂(ψ0)NOT. Since |ψ0⟩ is known, CΠ̂(ψ0)NOT is easily constructed using the circuit in
Figure 1.2. Meanwhile, in the same circuit, CΠ̂(m)NOT utilizes a controlled-Ûm operator, with
the control sandwiched between Hadamard gates.

Recall that the QSVT generates a gate sequence that applies an arbitrary odd-polynomial P

to A’s singular value, a. With a initialized to positive value 1√
N

and the search goal of mapping
|a|2 → 1, Martyn et al. (2021) show that the sign function (illustrated in Figure 1.4),

Θ(a) =


−1 a < 0
0 a = 0
1 a > 0

, (1.45)

is an apt odd-function. Θ(a) can be approximated as odd-polynomial PΘ(a) by the QSVT gate se-
quence Û

(Θ)
ϕ⃗

.

11The matrix labels indicate that the columns act on |ψ0⟩,
∣∣ψ⊥

0
〉

and the rows act on |m⟩,
∣∣m⊥

〉
.
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1.3.4 The “Grand Unification” of Quantum Algorithms

Prior to the QSVT algorithm discovery, as described in Section 1.3.1, the field of quantum
algorithms was disunited – with few, disjointed means of achieving quantum speedup. As
described in Section 1.3.2.3 and illustrated by Section 1.3.3’s search example, the QSVT applies
arbitrary polynomials to the singular values of a (possibly rectangular) matrix block-encoded into
a unitary matrix. Furthermore, Gilyén et al. (2019) and Martyn et al. (2021) demonstrate that
algorithms for search, simulation, factoring, and non-provably efficient domains (i.e. quantum
machine learning, the quantum OR lemma, fractional query implementation, and Gibbs state
preparation) can all be mapped into the QSVT framework. Thus, the QSVT provides a general
parameterization of quantum algorithms, with tunable phases ϕ⃗ and block-encoding Û(A), that
can be swept over to achieve the full spectrum of known quantum algorithms. In this sense,
it is a “grand unification” of quantum algorithms.

1.4 Philosophical Implications of the QSVT

Having presented existing philosophical quantum speedup theories as well as the QSVT’s workings
and significance, I now make three key arguments: (1) the QSVT algorithm should play a central
role in future philosophical quantum speedup discourse, (2) among existing philsophical theories,
QSVT’s speedup is closest related to that of BDV, and (3) all algorithms that fit within the QSVT
framework can be mapped to BDV, generalizing BDV to all known efficient quantum algorithms.

1.4.1 Putting the QSVT Center Stage

As explained in Section 1.2, there is no current consensus on quantum speedup (assuming such a
speedup does exist). Each speedup theory is derived primarily from a specific class of quantum
algorithms. The QPT is based on oracle algorithms, SIV is derived from measurement-based
quantum computation, and BDV is based on hidden-subgroup algorithms. Ultimately, the source(s)
of quantum speedup should be able to explain the success of all efficient quantum algorithms. This,
however, does not promote the coexistence of all three theories discussed in Section 1.2, since they
are not consistent with one another. QPT postulates quantum speedup by increased computation,
directly contradicting SIV and BDV’s argument that speedup comes from reduced computation.
SIV attributes speedup to entanglement, while BDV attributes it to the nature of quantum
logic. Thus, while multiple sources of quantum speedup may exist, current philosophical speedup
theories do not accurately encapsulate and distinguish those different sources. Work remains
in unifying the source(s) of quantum speedup.

What tool could better uncover and unify sources of quantum speedup than an algorithm which
parameterizes essentially all known (efficient) quantum algorithms? Granted the QSVT’s grand
unifying nature, as discussed in Section 1.3.4, future philosophical work on quantum speedup must
conform to the QSVT framework. Furthermore, rather than a high-level philosophical theory,
the QSVT is an algorithm in itself, possessing immense potential explanatory power. Beyond
enabling a deeper understanding of quantum speedup, close analysis of the QSVT could enable
systematic discovery of novel efficient quantum algorithms. Beyond philosophical theories, the
QSVT could enable a physical or mathematical theory of quantum speedup. In the remaining
sections, I present an initial theory for QSVT’s speedup.
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1.4.2 Quantum Speedup According to the QSVT

Quantum computer scientists have already begun high-level exploration of QSVT’s source of
speedup. When motivating the QSVT, Martyn et al. (2021) emphasize that a key discrepancy
between classical and quantum computation is the highly non-unitary nature of classical com-
putation, yet unitary nature of quantum computation. Fredkin and Toffoli (1982) attempted to
reconcile this by demonstrating (with a small overhead in space and time) reversible classical
Boolean functions, simulable by quantum circuits. However, prominent quantum algorithms
– such as Grover’s and Hamiltonian simulation – do not employ a reversible Boolean function
embedding. Shor’s algorithm requires a reversible embedding to instantiate the circuit input’s
modular exponentiation, but the core speedup emerges from clever use of the quantum Fourier
transform (with no known classical analog) for factoring. Thus, Martyn et al. conclude that
quantum speedup does not result from quantum implementation of reversible classical logic,
but instead from the non-unitary dynamical behavior of quantum subsystems. QSVT leverages
this to realize irreversible and non-linear functions.

QSVT’s speedup argument is nearly identical to that of BDV [emphasis my own]:

A quantum algorithm works by exploiting the non-Boolean logic represented by the projective
geometry of Hilbert space to encode a global property of a function (such as a period, or
a disjunctive property) as a subspace in Hilbert space, which can be efficiently distinguished
from alternative subspaces, corresponding to alternative global properties, by a measurement (or
sequence of measurements) that identifies the target subspace as the subspace containing the
final state produced by the algorithm. (Bub, 2010)

Both BDV and the QSVT attribute speedup to computation performed in non-unitary quantum
Hilbert subspaces. Thus, among current philosophical quantum speedup theories, QSVT supports
BDV.

1.4.3 Extending BDV to Search

Despite similar speedup intuition, the QSVT instantiates all types of quantum algorithms, whereas
BDV appears challenging to generalize beyond hidden-subgroup type algorithms (as discussed in
Section 1.2.3.3). However, I will now demonstrate that the QSVT OFPAA algorithm, presented in
Section 1.3.3, can be mapped into the BDV framework (analogously to Deutsch’s algorithm,
as presented in Section 1.2.3.2).

As described in Section 1.3.2.3, the QSVT parameterizes quantum algorithms as block-encoded
matrices and manipulates their orthogonal subspaces. The unitary matrix Û , block-encoding
matrix A, performs rotations between two distinct sets of orthogonal singular vector subspaces:
{|vk⟩ ,

∣∣v⊥
k

〉
} and {|wk⟩ ,

∣∣w⊥
k

〉
}. For search, qubitization mapped the algorithm into the singular

vector subspaces spanned by {|m⟩ ,
∣∣m⊥〉

} and {|ψ0⟩ ,
∣∣ψ⊥

0
〉
}. Although Figure 1.3, in light of

qubitization, visualizes the search subspaces as concentric Bloch-spheres, these subspaces can
alternatively be visualized as planes, analogously to those of Deutsch’s algorithm in Figure 1.1.
Mathematically, QSVT search deals with the two quantum logically defined planes,

Pm = P̂|m⟩ ∨ P̂|m⊥⟩ = Π̂(m) ∨ P̂|m⊥⟩ (1.46)

Pψ0 = P̂|ψ0⟩ ∨ P̂|ψ⊥
0 ⟩ = Π̂(ψ0) ∨ P̂|ψ⊥

0 ⟩, (1.47)
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with intersection ray

I⃗m,ψ0 = Pm ∧ Pψ0 . (1.48)

Recall that Deutsch’s algorithm made Pc and Pb as orthogonal as possible (with overlap solely
in I⃗b,c), so as to distinguish constant from balanced functions. In OFPAA, the goal is opposite
– i.e. maximize overlap between Pm and Pψ0 in order to map known initial state |ψ0⟩ onto
unknown desired state |m⟩. The QSVT applies PΘ to |m⟩ and |ψ0⟩’s corresponding singular
value a, mapping |m⟩’s measurement probability to 1,

Pm =
∣∣ ⟨m| Ûϕ⃗ |ψ0⟩

∣∣2 =
∣∣∣∣PΘ

(
a = 1√

N

)∣∣∣∣2
→ 1. (1.49)

Geometrically, the QSVT efficiently rotates Pψ0 onto Pm, increasing the conjunction to intersection
plane Im,ψ0 = Pψ0 ∧ Pm and maximizing probability of collapse to |m⟩.

1.4.4 Generalizing BDV via the QSVT

The previous section explicitly extended BDV to the realm of search. I now, more generally,
argue that any algorithm within the QSVT framework – including all know efficient quantum
algorithms – can similarly be mapped to BDV.

At the beginning of Section 1.3.2.3, I noted that the QSVT generalizes prior work on qubitization
and QSP. Qubitization block-encodes the algorithm matrix, A, into a larger unitary matrix,
Û , with sets of orthogonal singular vector subspaces: {|vk⟩ ,

∣∣v⊥
k

〉
} and {|wk⟩ ,

∣∣w⊥
k

〉
}. The

quantum logical disjunction of these singular vectors’ projection operators constitute sets of
mostly orthogonal planes,

P(k)
v = P̂|vk⟩ ∨ P̂|v⊥

k ⟩ = Π̂ ∨ P̂|v⊥
k ⟩ (1.50)

P(k)
w = P̂|wk⟩ ∨ P̂|w⊥

k ⟩ = Π̂′ ∨ P̂|w⊥
k ⟩, (1.51)

with intersections I(k)
v,w = P(k)

v ∧ P(k)
w . QSVT generalizes the QSP to calculate a gate sequence,

Ûϕ⃗, that applies arbitrary polynomial, P(ak), to A’s singular values. Within each set of planes,
the singular value ak governs the |vk⟩ → |wk⟩ transition probability as,

Pk = | ⟨wk| Ûϕ⃗ |vk⟩ |2 = |P(ak)|2. (1.52)

Geometrically, QSVT gate sequence Ûϕ⃗ rotates the planes within each set – modifying their
respective conjunction to maximize the desired outcome’s amplitude prior to system measurement.
Therefore, while the Hilbert subspace structure of efficient quantum algorithms may not always
be as obvious as that of hidden-subgroup algorithms, the QSVT demonstrates that all efficient
quantum algorithms can be mapped to BDV.

Not all QSVT parameterizations result in efficient quantum algorithms, but all efficient
quantum algorithms are parameterized by the QSVT. Thus, only certain computations (i.e.
P(a)) in certain Hilbert subspaces (i.e. A’s singular vector spaces) exhibit quantum speedup.
Although BDV and the QSVT have uncovered a probable source of quantum speedup, they do not
explain why it is the source of speedup. Why does computation in certain non-unitary subspaces
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of unitary quantum Hilbert spaces outperform computation in inherently non-unitary classical
spaces? Bub claims that quantum disjunctive logic enables richer computation than classical
computers. However, this is far from a QSVT block-encoding and polynomial selection criterion
for efficient quantum algorithms. A deeper understanding of the QSVT speedup could lead to
such a criterion, enabling systematic search for efficient quantum algorithms.

1.5 Conclusion

In this work, I presented existing theories for quantum speedup (the QPT, SIV, and BDV),
described a novel breakthrough in quantum algorithms (the QSVT), explained how the QSVT
serves as a grand unification of quantum algorithms, argued that future philosophical work
on quantum speedup must incorporate the QSVT, demonstrated a shared source of quantum
speedup in the QSVT and BDV, and used the QSVT to extend BDV to algorithms beyond
Bub’s original proposal. Granted that quantum speedup has not been rigorously proven, the
QSVT offers a unique avenue for exploring why quantum computers appear faster than classical
computers for certain computational tasks. A deeper philosophical understanding of quantum
speedup via the QSVT could enable systematic discovery of novel efficient quantum algorithms
– a holy grail for quantum computation.
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The asymmetry in time of the world about us is one of the
most fundamental aspects of our experience, and it is necessary
to inquire about the origin of this asymmetry.

— Davies (1977)
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2.1 Introduction

Statistical mechanics aims to explain the macroscopic predictions of thermodynamics via a system’s
underlying microscopic dynamics. Central to the phenomenological laws of thermodynamics is
the irreversible process, which introduces a temporal-asymmetry, generally exhibited via entropy
increase. We experience this temporal-asymmetry in our everyday lives – e.g. eggs fry in pans,
ice-cubes melt in warm water, and milk dissolves in coffee, but not vice-versa. However, system
micro-states, whether governed by classical Newtonian mechanics or quantum theory, are described
by temporally-symmetric laws. How, then, can statistical mechanics predict thermodynamic
macro-phenomena? Clearly, there must be some sort of temporal-asymmetry, but its emergence
is contentious – with significant epistemic and metaphysical implications.

In this work, I will introduce a common argument for statistical mechanical temporal-asymmetry,
known as the Past Hypothesis – which relies on constrained universal thermodynamic conditions
at the Big Bang. However, I argue that this theory is not well-justified, facing challenges ranging
from ill-defined entropy to questionable cosmological evidence. Rather than requiring a low-
entropy Big Bang to model the frying of an egg, I will assume David Parker’s stance that a ‘local’
hypothesis is necessary. Thus, I conclude by championing the merits of the Branching Hypothesis
– which accounts for statistical mechanical temporal-asymmetry via temporary separation of
quasi-isolated systems from a main environment.

2.2 Thermodynamics, Statistical Mechanics, and Reversibility

In this section, I concisely review necessary background from thermodynamics and statistical
mechanics, enabling discussion of reversibility and time-asymmetry.

2.2.1 The Laws of Thermodynamics

Thermodynamics is a “phenomenological science”, with parameters over macroscopic, measurable
variables – such as pressure, volume, and temperature. A treatment of classical thermodynamics
begins with two empirically tested and adequate laws (Callender, 2021):

The First Law of thermodynamics expresses conservation of energy. For thermally isolated
systems, work (W ) transferred to the system’s surroundings is compensated by internal energy (U)
loss, as dW = −dU . For non-isolated systems, this is extended to dQ = dU +dW , where dQ is the
reversible heat differential. This conservation of energy has no temporal-asymmetry and enables
the First Law to eliminate perpetual mobiles of the 1st kind – those which produce work without
energy. However, it does not rule out perpetual mobiles of the 2nd kind – those which spontaneously
convert thermal energy into work – necessitating the Second Law of thermodynamics.

The Second Law of thermodynamics, as described by Kelvin in the context of steam engines,
stated that there exists no thermodynamic process which solely transforms heat (extracted
from a source at uniform temperature) completely into work. Similarly, Clausius described
the Second Law as a thermodynamic process’ inability to solely extract heat from a colder
reservoir and deliver it to a hotter reservoir. Note that the Second Law applies only to isolated
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systems. For a reversible, quasi-static transformation from arbitrary state fixed state O to state
A, Clausius defined thermodynamic entropy as

S(A) =
∫ A

O

dQ

T
, (2.1)

with temperature T . Given the quasi-static nature of this process, O and A must both be equilib-
rium states. Using this notion of entropy, the Second Law claims that, for equilibrium states B and
C,

∆S = S(C) − S(B) ≥
∫ B

C

dQ

T
, (2.2)

where equality is achieved only for a reversible process. In other words, entropy cannot decrease
during spontaneous evolution of a thermally closed system and attains its maximum value at equilib-
rium.

2.2.2 Statistical Mechanics

Statistical mechanics aims to resolve the thermodynamic macroscopic system state (macro-state)
with its underlying microscopic state (micro-state). In the late 1800s, Boltzmann and Gibbs
developed two independent statistical mechanical frameworks.

Suppose we have a 3D box filled with N gas particles. In Boltzmannian statistical mechanics,
the system micro-state is governed by the 3D position (q⃗i) and momentum (p⃗i) vectors of every
particle (i) in the box. The full system micro-state is mathematically represented as vector
X⃗ = (p⃗1, ..., p⃗N , q⃗1, ..., q⃗N ) in the 6N-dimensional ‘Γ-space’ phase-space. Since many micro-states
can exhibit the same macroscopic properties, the micro- to macro-state mapping is surjective.
Thus, each macro-state, M , consists of multiple Γ-space points and has phase-space volume |ΓM |.
The system’s instantaneous Boltzmann entropy is defined as,

SB(M(X)) = kB log(|ΓM |), (2.3)

where M(X) is the macro-state corresponding to the instantaneous system micro-state and
kB is Boltzmann’s constant. Granted combinatorial coarse-graining arguments, the vast ma-
jority of Γ-space is dominated by the equilibrium macro-state’s volume. Therefore, entropy
is maximized at equilibrium.

Furthermore, granted assumptions of ergodicity (or otherwise unstructured motion around
phase-space), any state initially in a small-volume, non-equilibrium macro-state will rapidly move
into the large-volume, equilibrium macro-state. Thus, the entropy of non-equilibrium states is
likely1 to increase in time. Once in equilibrium, there is a small, non-zero probability that the
system will move back out of equilibrium. In this way, entropy increase is not deterministic,
but a probabilistic process or tendency.

In place of a singular micro-state traversing Γ-space, Gibbsian statistical mechanics defines a
probability distribution, ρ, over all possible micro-states. This probability distribution encodes
system likelihood of producing a given micro-state and defines the Gibbs entropy as

SG(ρ) = −kB
∫

ΩE
ρ(Γ) log(ρ(Γ)) dΓ, (2.4)

1There is no guarantee that the system will immediately move into equilibrium.
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where ΩE is the set of all possible system micro-states. Since equilibrium is defined by constancy
of observed system macro-states, the equilibrium distribution is stationary. Finally, the Gibbsian
max entropy principle requires ρ maximize SG – under system constraints such as constant energy
and/or particle number – enabling derivation of canonical equilibrium distributions.

2.2.3 Reversibility

Thermodynamics’ exact time-asymmetry source is disputed. While most claim it arises in the
Second Law, some – including Uffink (2001) and Brown and Uffink (2001) – argue it is an
altogether separate assumption (i.e. the “Minus First Law”). Overall, however, spontaneous
movement from non-equilibrium to equilibrium, or lower to higher entropy, is assumed and
accepted. Furthermore, irreversible processes lie at the heart of thermodynamics. Thus, I take
for granted the existence of thermodynamic temporal-asymmetry.

Statistical mechanics, on the other hand, seems incapable of accounting for this temporal-
asymmetry. Traditional statistical mechanics is microscopically governed by reversible Newtonian
mechanics – i.e. the system’s energy function, Hamiltonian H(q⃗1, ..., q⃗N , p⃗1, ..., p⃗N ). The system
micro-state evolves according to Hamilton’s equations of motion,

dq⃗i
dt

= ∂H

∂p⃗i
,
dp⃗i
dt

= −∂H

∂q⃗i
, (2.5)

begging the question of how temporal-asymmetry arises in statistical mechanics?2

Two well-established arguments – the reversibility objections – challenge statistical mechanical
ability to adequately describe thermodynamics, due to lack of temporal-asymmetry. The Loschmidt
paradox states that, for time-reversible statistical mechanics, any forward-process compatible with
the laws must have a corresponding, compatible backwards-process. Thus, entropy-decreasing
processes can be no less natural or statistically common than entropy-increasing ones (Loschmidt,
1867). This implies that an ice-cube in warm water is as likely to melt as a portion of the warm
water is to freeze into an ice-cube. Zermello’s recurrence further establishes that any classical
system confined to a finite phase-space region will invariably return (arbitrarily close) to its initial
conditions (Zermelo, 1896). This implies that if a fried egg survived long enough, it would un-fry.

2.3 Explanations for and Implications of Entropy Increase

In light of these troubling findings, I will present Albert (2001)’s reconciliation of the reversibility
arguments with Boltzmannian and Gibbsian statistical mechanics – known as the Turning
Argument. I will then demonstrate how the resulting Past Hypothesis leads to worries of
“Boltzmann brains” and insufficient justification of a low-entropy past.

2Although modern treatment of microscopic physics necessitates quantum theory, it is also time-reversible
(governed by unitary operations) and will not affect this work’s discussion. For simplicity, I will focus on the
classical case, but note that Wallace (2011) believes subtle differences between classical and quantum statistical
mechanics can have implications for the Past Hypothesis.
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Figure 2.1: If a system is at non-maximal entropy m at time t, most physically-possible trajectories
will curve in both temporal directions towards equilibrium (C), not away (A,B). [Inspired by (Albert,
2001) Fig.4.1]

2.3.1 The Turning Argument

Albert claims that the Turning Argument (TA) reconciles statistical mechanics and the reversibility
objections. As discussed in Section 2.2.2, Boltzmannian and Gibbsian micro-states tend towards
the equilibrium macro-state. According to Albert, this entails that “the overwhelming majority
of the trajectories passing through any particular non-maximal-entropy macrocondition increase
their entropies toward the future” and, in light of the Loschmidt paradox, “the past!” Therefore,
every non-maximal-entropy microcondition is a ‘turning point’ for physically possible trajectories
passing through it. While some trajectories may continue decreasing into the future or past, each
entropy decrease causes significantly more trajectories to ‘turn’ and increase in entropy (illustrated
in Figure 2.1). Therefore, continual entropy decrease becomes exponentially harder over time.

In Albert’s words, “only an unimaginably tiny minority of the physically possible trajectories”
will follow a continuously increasing or decreasing trajectory (like Figure 2.1’s A and B trajectories).
This may seem alarming. Suppose I drop an ice-cube into warm water at time t = 0. Consistent
with the TA, I expect entropy increase into the future, producing a half-melted ice-cube at at
t = 5 and a fully-melted ice-cube equilibrium state at t = 10. However, looking retrospectively
from t = 5, Albert’s TA implies a similar entropy increase, meaning the ice should be fully-melted
at t = 0 – a clear contradiction to the starting supposition and real-world experience!

2.3.2 The Past Hypothesis

Albert argues that, by constraining the universe’s initial state, the Past Hypothesis (PH) resolves
this contradiction, aligning statistical mechanical predictions with real-world experience. His
argument is rooted in an example consisting of a ‘pinballish’ ice-machine and several warm
water glasses (depicted in Figure 2.2).

Assume, at t = 0, the glasses are filled with half-melted ice-cubes. By the TA, at t = 5
(future), all ice should be fully melted. Similarly, by the TA, entropy increases from t = 0 to
t = −5, meaning all ice was also fully melted at t = −5 (past). However, suppose our real-
world memory tells us that, at t = −5, the ice-cubes were fully un-melted in the glasses. To
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Figure 2.2: Albert’s pin-ball ice machine. [Inspired by (Albert, 2001) Fig.4.2]

remedy the TA and match the real-world memory, Albert suggests we instead begin our entropy
analysis from the observed t = −5 macro-state. Clearly this will lead to accurate predictions for
t ≥ −5, but problematic ones for t < −5 (since TA predicts the glasses ice will be half-melted
at t = −10 and fully-melted for t ≤ −15).

Thus, Albert once again suggests moving our starting point back, this time to t = −15. In
this case, however, the outcome is different. At t = −15, fully-frozen ice-cubes are observed atop
the pinballish device, ready to fall into the glasses. The overall system macrocondition has a
slightly lower temperature than the macroconditions at t = −5 or t = 0 (energy will be gained
as ice falls). Furthermore, this starting condition does not guarantee that the ice-cubes will fall
into the same configuration, producing overwhelmingly large probability of a different macro-state
(each macro-state having relatively little probability). However, starting at t = −15 ensures
that macroscopic system properties (such as overall energy and how melted the ice-cubes are)
will be conserved across most possible t = −5 and t = 0 macro-state outcomes. Albert argues
this constitutes “a fully satisfactory probabilistic theory of the history of this system beginning
[15] minutes ago”. However, this pinball-ice theory fails anytime t ≤ −15. To ensure the theory
is correct at any previous time, Albert concludes “all such posits are bound to fail – unless
they concern nothing less than the entirety of the universe at nothing later than its beginning”.
In conclusion, Albert posits that the universe started in an extremely low-entropy macro-state,
preventing universal entropy decrease following the Big Bang.

2.3.3 Boltzmann Brains

Let’s take a step back. Suppose the current universal macro-state, P , has a uniform distribution,
DP , over all possible corresponding phase-space micro-states, MP . By the TA alone (without
postulating a PH), this setup is only compatible with our future expectations. Past memories and
artifacts appear to falsify TA predictions of entropy increase towards the past. However, all this
evidence (e.g. my mental state in conjuring a memory or a photograph of my great grandmother)
is fully described by P . As illustrated in Figure 2.1, the majority of trajectories leading into P
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come from higher-entropy states and are in the process of turning. A trajectory from the initial
low-entropy state – supported by our memories and artifacts – is so unlikely that Albert admits
such a memory or artifact probably “formed, spontaneously, as a matter of pure chance”.

Generally speaking, everything we believe to have previously experienced – all our thoughts
and memories – are far more likely byproducts of a random, instantaneous collection of molecules
in a high-entropy universal macro-state. As described by Albrecht and Sorbo (2004), if the
universe spent eternity in heat death, eventually a rare thermal fluctuation would spawn a
Boltzmann brain – indistinguishable from an intelligent observer – which perceives the ‘present’
and all our ‘past memories’. Such a Boltzmann brain fluctuation, is far more likely than the
fluctuation necessary to produce a low-entropy system at the scale of the observable universe.
To reconcile this, Albert updates the PH – requiring, not only a low-entropy initial macro-state,
but also a restricted phase-space distribution that ensures the universe evolves to its current
macro-state. While this phase-space distribution prevents a Boltzmann brain catastrophe within
the PH, it does not actually justify the PH. Therefore,

the flip-side of the insight of Boltzmann and Gibbs is that there can be nothing at all about the
present macrocondition of the world which can possibly count as evidence that the world’s entropy
has ever previously been lower. (Albert, 2001)

2.4 Further Challenges for the Past Hypothesis

In light of this Boltzmann brain reductio ad absurdum, the PH does not appear justified in its
claims about past entropy. In the following section, I will raise further potential concerns with
the PH, challenging its: (1) notion of universal entropy, (2) universal scope of entropy increase,
(3) desired cosmological evidence, and (4) explanatory power.

2.4.1 Is Universal Entropy Well-Defined?

The PH relies on a definition of the universe’s entropy. Assuming a finite universe3, Boltzmannian
or Gibbsian statistical mechanics can define universal entropy via a course-graining or probability
distribution over Γ-space’s description of every atom in the universe. However, many philosophers
believe universal thermodynamic entropy is not well-defined. For example, Planck (1897) argues
it is simply undefined. The integral of Equation (2.1) defines thermodynamic entropy between
two different system states. However, if system A represents the state of the whole universe,
where could it possibly absorb heat from? Even if the universe could be treated as an arbitrary
adiabatic isolated system, Uffink (2001) is skeptical that such an irreversible process could be
closed by a reversible process to form a cycle (as needed to define entropy between initial and
final states). Historically, thermodynamics was proposed to explain the macroscopic workings of
steam engines. While, admittedly, thermodynamics has proven successful for systems far more
complex than steam engines, extrapolating to a universal scale seems unwarranted.

3In the infinite case, Reichenbach (1956) argues statistical mechanical probability and entropy cannot be defined.
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2.4.2 Entropy Beyond the Observable Universe?

Even if universal entropy was well-defined, why must entropy increase at the universal scale?
Feynman (1965) argues that,

from the hypothesis that the world is a fluctuation, all of the predictions are that if we look at a
part of the world we have never seen before, we will find it mixed up, and not like the piece we
just looked at. If our order were due to a fluctuation, we would not expect order anywhere but
where we have just noticed it. We therefore conclude that the universe is not a fluctuation, and
that the order is a memory of conditions when things started.

In other words, Feynman believes that, because the observable universe possesses the same
low-entropy dynamics as we experience, the whole universe must be low-entropy – with the
PH as the only possible justification.

This is a bold extrapolation. Granted that we can only measure a small portion of the universe
(the ‘observable’ universe), we cannot dismiss the possibility of future observations revealing
high-entropy dynamics beyond the current observable universe. In fact, Price (2004) claims that
we should not expect the low-entropy region of the universe “to be any more extensive in space
than we already know it to be” – meaning we may inhabit a low-entropy pocket of the universe.
Even if this low-entropy pocket was unlikely, a low-entropy environment is crucial for the survival
of organisms like ourselves. Therefore, were such a pocket to exist, it would be unsurprising
that we would inhabit it. In conclusion, the PH’s universal macro-state is underdetermined,
posing a challenge for realist commitment to the theory.

2.4.3 Cosmological Evidence?

Like many philosphers, such as Carroll (2020), Albert is eager to dismiss the Boltzmann brain
argument. However, as discussed in Section 2.3.3, the additional restrictions placed on the
universe’s initial phase-space were ad hoc. Thus, the PH appears solely justified in preventing
skeptic catastrophe. This, however, is unsatisfying – leading many to seek justification for the
PH in the form of cosmological evidence.

In fact, Price (2004) urges astronomers to determine cosmological conditions – during and
prior to the Big Bang – for the sake of justifying the PH. However, this proposal expresses
a fundamental lack of scientific objectivity. Furthermore, any cosmological observation made
regarding the Big Bang faces significant verifiability challenges. In addition to typical astronomy
hardships that come with indirectly observing distant objects and phenomena (via theory-laden
apparatuses), claims deduced regarding the early universe cannot and never will be directly
verifiable by human experience. Thus, cosmological evidence alone appears unsubstantial in
justifying the PH. Earman (2006) endorses this view when describing several contentious, modern
cosmological theories and findings.

2.4.4 Parker’s Argument for a ‘Local’ Hypothesis

Although there exist further PH objections, I conclude with Parker (2005)’s presentation of,
arguably, the most intuitive, yet rigorous criticism. Parker attacks the PH’s explanation for
everyday thermodynamic experiences:
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The informality of the argument aside, it appears implausible that the mere stipulation of a
nonequilibrium state of the universe somewhere in the distant past could justify my memory of an
unmelted ice-cube ten minutes ago, somehow make it altogether improbable that the ice cube
formed as a spontaneous fluctuation ten minutes ago, and testify to the veracity of any records to
that effect.

He conjectures that the PH can only be a useful theory if conditionalizing on the present state of
a glass-ice system and the universe, as well as the universe’s starting condition, produces a high
probability of un-melted ice 10 minutes ago. Mathematically, the PH must satisfy the inequality

P( U |H &B &M ) > 1
C
, (2.6)

where B is the phase-space region containing all micro-states compatible with the universe’s
initial low-entropy macro-state; U is the region compatible with an unmelted ice-cube 10 minutes
ago (the PH); H is the region compatible with a currently half-melted ice-cube; M is the region
compatible with the macro-state of the rest of the universe (excluding the ice and water)4;
and C is a positive constant5.

Through simple manipulation of conditional probabilities, paired with insight about the PH
and phase-space, Parker shows that Equation (2.6) reduces to

P(B | U &M ) ≫ P(B |H &M ). (2.7)

Equation (2.7) posits that a low-entropy Big Bang is more likely if the ice-cube was un-melted
10 minutes ago than if it is currently half-melted. However, Albert’s TA claims that nothing
in the present universe could justify the universe being further from equilibrium than it is now.
Therefore, the PH does not satisfy Equation (2.7), nor (2.6).

Parker suggests the PH lacks explanatory power because Albert’s simplified pinballish ice-
machine example does not generalize to a universal scale. Specifically, universal time magnitudes
are larger and universal subsystems interact (unlike the glasses of water). Furthermore, the
transition from unmelted to melted ice-cubes in the pinballish ice-machine example (a ‘local’ PH)
is likely, while the transition from the Big Bang macro-state to our present universe’s macro-state
(Albert’s ‘global’ PH) is not. In fact, Parker demonstrates that the pinball ice-machine example
satisfies the original inequality of Equation (2.6). In this case, M fixes the system of interest’s
history, such that H and U can be discarded, resulting in

P(B &M )
P(B &M ) = 1 > 1

C
. (2.8)

Thus, Parker argues that we should not conditionalize on initial conditions of the universe to
explain irreversible processes. Instead, a local theory is needed.

2.5 A ‘Local’ Hypothesis

I conclude with a discussion of Reichenbach (1956) and Davies (1977)’s alternative, local theory of
statistical mechanical temporal-asymmetry, known as the Branching Hypothesis (BH). I defend
the BH against Albert’s objection, Boltzmann brains, and other challenges faced by the PH. With
this, I argue that the BH provides a justified explanation for both past and future entropy.

4Note: M ∩H is the phase-space region compatible with the entire, current universe.
5Parker argues for C ≥ 2.
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Figure 2.3: Branch systems (red and blue curves) temporarily separate from the main environment
(primary black curve), defining time in the direction of entropy increase. [Inspired by (Reichenbach,
1956) Fig.21]

2.5.1 The Branching Hypothesis

The BH argues that the key to an arrow-of-time is isolation – or lack thereof it. As described
in Section 2.2.1, the Second Law of thermodynamics assumes all involved systems are isolated.
In practice, however, this is an extremely restricting assumption. Davies notes that: (1) It
is impossible to experimentally produce perfectly isolated systems – at best, we can hope for
quasi-isolated systems with relaxation times short enough to prevent noticeable disturbance by
the environment. (2) Even if a perfectly isolated system was possible, the system could not be
isolated for all time. Thus, Reichenbach argues that low-entropy systems should be modeled as
“subsystems of comprehensive systems”. The comprehensive system’s total entropy increases, while
the subsystem of interest is put into a state of relatively low entropy6. For example, frying an
egg requires heat flow from the stove-top and energy dissipation by the chef’s muscles. These
quasi-isolated systems that separate from the main, higher-entropy environment are known as
branch systems. For example, in the previous ice-cube in warm water example, the ice-water
system only came into existence once the ice-cube was submerged in the water and began melting.
This is a quasi-closed system because the melting can be explained to high-accuracy7 without
reference to anything beyond the ice and water.

Reichenbach’s key insight is relating the evolution of branch systems ensembles to the
mixing processes of gas molecule ensembles. Through manipulations of probability lattices8,
he demonstrates that ensembles of branch systems, unlike temporal ensembles of singular isolated
systems (as referenced in the TA), defy Loschmidt’s paradox. Thus, when a branch system breaks
off from the main environment, Reichenbach shows that “the probability that a low-entropy state
is followed by a state of high entropy is greater than the probability that the same low-entropy
state is preceded by a state of high entropy.”

As depicted in Figure 2.3, branch systems usually only separate from the main environment for
a limited time. For example, someone will eventually drink a glass of melted ice-water, or it will

6Here, “relative” is with respect to other configurations of the subsystem, not the full universe.
7A more accurate explanation would require incorporating more of the environment – e.g. simulating air

surrounding the glass that will cool.
8For the sake of brevity, I do not explain these derivations in this work. The interested reader can refer to

(Reichenbach, 1956) Chapter 14.
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evaporate. Thus, a primary curve represents the main environment’s entropy9, with small branch
systems constantly breaking off and recombining to explain everyday, observed lower-entropy
phenomena. Reichenbach argues that the direction of these quasi-isolated branch systems define
the ‘positive’ direction of time. Increases in the primary curve’s entropy support our normal
intuition that time moves in the ‘forward’ direction. However, even when the primary curve’s
entropy decreases, branch systems still trend towards higher entropy, thus time is defined in the
‘backward’ direction. Therefore, time is not consistently defined and changes with the environment.
Reichenbach notes that such environmental changes from increasing to decreasing entropy, or
vice versa, are separated by periods of entropy too high or low to support human life. Thus, in
line with our experiences, we could never experience a time direction ‘flip’.

2.5.2 Albert’s Argument Against the Branching Hypothesis

Before arguing for its merits, I will briefly dispel Albert (2001)’s key concern with the BH. Albert
does not give the BH much credit – decrying it as “sheer madness”. His only objection to the
hypothesis is presented as a series of rhetorical questions:

How is it (to begin with) that we are to decide at exactly what moment it was that the glass of
water with ice in it first came into being?...How is it (exactly) that the medium-sized system we
decided to focus on was the glass of water with the ice in it and not (say) the room in which that
glass is currently located, which also contains the table on which the glass is currently sitting, and
the freezer from which the ice was previously removed, and the person who first got it into his
head to do the removing? The uniform probability-distribution over the possible microconditions
of the macrocondition of that system...[will] differ quite radically...from the one we have just been
talking about!

In other words, Albert claims branch systems are ill-specified and changing their scope would
result in drastically different micro- and macroconditions.

However, as argued by Reichenbach, if we had a full specification of, say, every particle’s position
and velocity in a gas chamber, we could deterministically calculate the particles’ motion backwards
in time and verify that their entropy does, in fact, decrease. However, we cannot obtain the full
microcondition of non-trivial systems of interest, necessitating statistical mechanical assumptions
and approximations. In this way, I argue that the start, end, and scope of a branch system is no
more arbitrary than, say, Boltzmannian coarse-graining or Gibbsian probability distributions.

If anything, the BH more closely mimics practical scientific intuitions than the PH. Reichenbach
notes that “by ‘isolated’ we do not mean complete isolation; it is sufficient if the process within
the subsystem represents energy exchanges which are large compared with the interaction with
the environment”. If a reasonable branch start and end – e.g. when the ice cube is dropped in
the glass and when the ice-water is drunk – are chosen, as well as a reasonable system scope –
e.g. the glass containing the water and the ice – this will enable decent calculations. In making
real-world predictions, physicists do not model the entire universe’s phase-space, but narrow their
scope to the system of interest. The Big Bang should not be necessary to calculate the entropy of
a frying egg. Of course, widening the time interval of or incorporating more of the environment
(e.g. modeling air particles hitting off the ice and dispersing back around the room) into a branch
system could enable more accurate calculations. However, accuracy gains would be negligible
relative to the exponentially increasing problem complexity as system scope widens.

9Note that this environment does not need to be the full universe, but could for example be the observable
universe. In fact, as in Section 2.4.1, Reichenbach argues that entropy is not even defined at the full scale of the
universe.
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2.5.3 No Need for a Past Hypothesis

Beyond the previous concern, Albert simply asks “why in God’s name bother with all [these
branch systems], when the uniform probability-distribution over the possible microconditions
compatible with the macrocondition of the world, at the moment when it came into being,
will very straightforwardly give us everything we need?” However, in Sections 2.3.3 and 2.4, I
presented several clear challenges to justification of the PH: (C1) Boltzmann brains, (C2) ill-defined
universal entropy, (C3) unknowable entropy beyond the observable universe, (C4) problems with
cosmological evidence, and (C5) need for a more local hypothesis. I now argue that the BH
avoids all these issues, warranting explanatory merit.

Albert’s TA suggested a low-entropy system is most likely at an entropy minimum (i.e. entropy
will increase both forwards and backwards in time). However, backwards entropy increase is
inconsistent with our everyday experience and, thus, problematic. Parker (2005) argues that “if
a branch system is formed in a random low entropy state, it simply did not exist in the ‘past’
for entropy to increase that way...It is through branch systems that the customary intuitive
notion that entropy increases with time is derived”. By evading Loschmidt’s paradox, the BH:
does not necessitate the TA, remains consistent with our everyday observations, and does not
imply that the current universe is unlikely or arose from a statistical fluctuation – avoiding
Boltzmann brains (C1). Furthermore, the BH – concerned only with a quasi-isolated system’s
initial conditions and not those of the universe – satisfies Parker’s criterion for a ‘local’ theory
(C5). An individual branch systems’ scope is far smaller than that of the universe. Even the
main environment, from which these subsystems break off, need not be the scope of the full
universe (C3). This removes worries about a definition of universal entropy (C2) and eliminates
need for cosmological evidence of the universe’s distant past (C4).

In a final, futile attempt at justification, Albert argues that the PH deserves law-like status,
in light of its successful empirical predictions:

And so the fact that the universe came into being in an enormously low-entropy macrocondition
cannot possibly be the sort of fact that we know, or ever will know, in the way we know of
straightforward everyday particular empirical facts. We know it differently, then. Our grounds
for believing it turn out to be more like our grounds for believing general theoretical laws. Our
grounds (that is) are inductive; our grounds have to do with the fact that the [PH]...turns out to
be enormously helpful in making an enormous variety of particular empirical predictions.

However, his examples of successful predictions – i.e. high likelihood of digging a second boot out
of the sand and the prior existence of Napoleon – are similarly (if not more easily and intuitively)
predicted by the BH. Additionally, similar to Section 2.5.2, the PH’s empirical merits appear
irrelevant to practical day-to-day use of statistical mechanics by scientists. The PH relies upon the
universe’s initial entropy, but, most likely, no scientist will ever definitively claim such knowledge
(as argued in Section 2.4.3). This, however, has not barred successful application of statistical
mechanics. A scientist using statistical mechanics to model a frying egg does not start calculations
from the Big Bang, but instead from the inception of the egg-pan-stove system. A PH proponent
could protest – arguing scientists need not explicitly reference the Big Bang, since the PH is
already implicitly embedded in the arrow-of-time assumption. However, there exist alternative
explanations (i.e. the BH) for the statistical mechanical arrow-of-time.
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Let’s put aside the extensive arguments for the BH, presented in this work. If all were equal,
why choose the PH – which relies on the unlikely occurrence of an extremely low-entropy Big
Bang and constraints ensuring its unlikely evolution to the present universe – over the BH –
which utilizes temporarily quasi-isolated subsystems that are observed in our daily experiences
and match practical scientific intuition? In the words of Reichenbach, “[i]f we wish to find a
way of defining a direction of time, it is advisable to study the actual procedure which is used
when inferences concerning time direction are made.”
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To my own taste the philosophical position which is, or should
be, of most interest to the physicist is the realist one, although
again one must be careful to distinguish different answers to
the question, realist about what? Is it the entities, the abstract
structural relations, the fundamental laws or what?

— Michael Redhead (1999)
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3.1 Introduction

Core to the philosophy of science is how our scientific theories relate to the real world. Namely,

do the entities, principles, properties, relations, phenomena, actions, and structures described

by scientific theories truly exist? Or are they simply useful instruments for making empirical

predictions? Such questions challenge the core pursuit of science, raising skepticism over a

‘fundamental working’ of the universe that we can ever understand, describe, or model.

In this work, I assess the realist versus anti-realist debate in light of a modern and promising

theory of scientific realism: structural realism. Specifically, I argue for the merits of ontic structural

realism – positing relationships as ontologically primitive, with properties and objects derivable

from relationships. I defend this view against the key ‘relations without relata’ challenge, arguing

for its merits over alternative flavors of realism – i.e. semi- and entity realism. Finally, I discuss

the implications of structural realism for modern science.

3.2 Challenges for Traditional Scientific Realism

I begin by introducing the scientific realism debate, elaborating on its historical context and key

arguments. I then demonstrate how anti-realist attacks – e.g. underdetermination and pessimistic

induction – pushed scientific realists to modern forms of entity, semi-, and structural realism.

3.2.1 Observability

Philosophy of science is largely concerned with observability, which is intertwined with human

sensory capability and constitutes an entire philosophical literature. Here, I narrow the scope

of ‘observable’ to mean anything detectable via the unaided senses – e.g. a dog, sunlight, or

warmth of a coffee. Meanwhile, ‘unobservable’ refers to anything undetectable in this way –

e.g. electrons or the cosmic microwave background. Chakravartty (2007) further categorizes

unobservables into detectable and undetectable. Detectable unobservables can be observed if

the senses are extended through measuring instruments. Undetectable unobservables cannot

be detected, but are posited for theoretical or explanatory reasons.

3.2.2 Scientific Realism and Anti-Realism

Realists and anti-realists debate the role scientific observables and unobservables play in the

real world. Realism is typically characterized by the existence of unobservables, independent of

one’s beliefs and conceptual schemes (Miller, 2021). Whereas realists typically take a positive

epistemic attitude towards both observables and unobservables, anti-realists1 argue against the

description and understanding of unobservables.

1Although sometimes attributed to a singular theory, “anti-realism” here refers to a spectrum of theories,
opposing different aspects of realism.
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3.2.3 The Argument for Scientific Realism

Scientific realism was traditionally proposed and defended via the miracles argument (Brown,
1982). According to Putnam (1978), realism “is the only philosophy that doesn’t make the success
of science a miracle”. Our best scientific theories – from quantum theory to general relativity –
are incredibly successful, enabling accurate predictions and approachable explanations of complex
phenomena. Realists argue that truth of these scientific theories is the only plausible explanation
of their success. If untrue, such theory success would have to be a miracle. Between accepting
scientific theories as true or miraculous, realists argue the obvious choice is truth.

Realists believe the miracles argument is further strengthened by corroboration. An unob-
servable solely measureable via a single experiment is theory-specific and could be overturned or
modified by another theory. However, unobservables measurable in multiple independent ways are
robust and theory-independent (Eronen, 2015). Thus, realists argue it would be an extraordinary
coincidence (miracle) if corroborated unobservables do not exist.

3.2.4 Arguments Against Traditional Scientific Realism

Anti-realists have challenged traditional scientific realism, especially the miracles argument, on sev-
eral fronts.

In objection to the miracles argument, Van Fraassen et al. (1980) denies the need to explain
theory success. He instead proposes the Darwinian evolution argument, in which “any scientific
theory is born into a life of fierce competition, a jungle red in tooth and claw. Only the successful
theories survive”. Thus, scientific theories can be thought of as well-adapted organisms. Darwinians
do not question why species run from predators, but claim that, if they do not, they will not
survive and become irrelevant. Similarly, anti-realists argue that theory success is unsurprising –
unsuccessful theories become irrelevant. Therefore, theory success does not reflect correspondence
with reality, but a test of survival. Magnus and Callender (2004) further challenge the miracles
argument via the base-rate fallacy, which dismisses success as a proxy for a scientific theory’s
truthfulness. Since we cannot gauge the base-rate of true theories amongst all theories, we
cannot calculate the probability of a theory being true versus a “false positive” (i.e. a successful
scientific theory wildly different from the truth).

Reiss and Sprenger (2020) challenge corroboration on the feasibility of objectivity, which
is hard to achieve in practice because of theory-ladenness and incommensurability. Duhem
(1991) also argues that theoretical preconceptions can influence observations. Thus, anti-realists
challenge corroboration as a metric of theory truth, instead claiming it as a metric of the
scientific community’s belief in theory truth.

Further anti-realist concerns emerge from theory underdetermination, in which distinct
scientific theories make successful predictions about the same phenomena. Clearly the realist can
commit to only one theory, but this theory may consist of drastically different unobservables to
others. In the case of, say, superfluous unobservables, the theorist could commit, via Ockham’s
razor, to the simplest theory. However, determining theory simplicity or, more generally, theory
selection criteria is subjective.

Finally, Chakravartty (2007) claims the strongest anti-realist objection is the pessimistic
induction argument which challenges full epistemic commitment to scientific theories, based
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on historical evidence. Considering the history of scientific theories, there is a clear trend of
theory overturn as scientific knowledge progresses. In his highly influential work, The Structure
of Scientific Revolutions, Kuhn (1970) establishes a recurring pattern of transitions between
so-called ‘normal science’ periods and revolutions. During ‘normal science’ periods, scientific
theories remain fairly constant. Meanwhile, during revolutions, e.g. the transition from classical
to quantum mechanics, scientific theories are radically rethought. Thus, the historicist anti-
realist argues that realist commitment to the reality of scientific theories requires commitment
to incompatible entities over time. Furthermore, given the long history of theory overturn,
there is high likelihood that our current theories will be overturned. In light of this, how can
any current theory fully describe reality?

3.2.5 Modern Proposals for Scientific Realism

To address these anti-realist concerns, especially pessimistic induction, 20th-century realists
reformulated their commitment to one of “approximate” truth. While scientific theories are
likely to eventually be overturned, aspects will be reflected in the overturning theories – often
as limiting cases. Although a given scientific theory has high probability of falsity, modern
realists defend proximity to the truth. Many argue the goal of science is converging scientific
theories to truth over time (Hardin and Rosenberg, 1982).

Realists are typically fallibilists, committing only to sufficiently mature and non-ad hoc theories,
so as to minimize likelihood of commitment to a fully false theory (Worrall, 1989). Determining
which aspects of approximately true theories are worth commitment, known as selective skepticism,
has led to the development of multiple flavors of realism, notably: entity, semi-, and structural
realism. At a high level, entity realism (Cartwright and McMullin, 1984; Clarke, 2001) suggests
commitment to entities with strong causal underpinnings, e.g. unobservables describing multiple
phenomena, but not to theories describing those entities. Structural realism (Ladyman, 2020)
recommends commitment not to entities, but to structures. However, determining what constitutes
a structure, is a key point of contention. Epistemic structural realism denies knowledge acquisition
beyond structures, whereas ontic structural realism denies existence beyond structures. Finally,
semirealism (Chakravartty, 2007) aims to combine the best aspects of entity and structural
realism by committing to entities and structures likely to be retained in scientific theories.
In light of modern and historical scientific theories, I will argue that ontic structural realism
provides the best defense against anti-realism.

3.3 The Fundamental Nature of Relationships

As previously mentioned, the structures of structural realist commitment are widely debated. In
this section, I argue that relationships are fundamental structures, while objects and properties
are derivable from relationships. Although my personal view is that objects and properties do not
exist (they are merely illusory) and unworthy of realist commitment, it is beyond the scope of
this work to argue so. Therefore, this argument is open to alternative possible commitments, e.g.
where objects and properties are non-fundamental but exist. Finally, (a disclaimer) although I will
occasionally reference objects and properties – e.g. electrons and colors – I do not mean to imply
that such entities exist, but instead mean to refer to their underlying relational constituents.
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3.3.1 Deriving Objects

Drawing inspiration from bundle theory (Campbell, 1981; Orilia and Paolini Paoletti, 2022), I argue
that bundles of properties comprise observable and detectable unobservable objects2. Granted a
mind-independent reality, I assume our most reliable means of acquiring information about reality
is via our senses – i.e. taste, smell, vision, touch, and hearing. While, in our day-to-day experiences,
we learn about and interact with the items referred to as ‘objects’ (e.g. dogs, apples, cars) via these
senses, I argue such ‘objects’ are actually inferred from our experience of various properties (e.g.
shape and color). In this way, ‘objects’ instantiate our experience of properties. For example, the
experience of a sheep is fully characterized by observed properties – e.g. seeing its white color and
round shape, feeling its fluffy wool, smelling its barn odors, and hearing its “baas”. Furthermore,
although distinct in a spatial-temporal sense, other animals are characterized as sheep because they
possess the same characteristic properties. Thus, ‘objects’ are derived from bundles of properties.

The scientific realist hopes to extend this argument to unobservable entities. As previously
mentioned, knowledge is most reliably gained through personal sensory experiences3. Using
measuring instruments to aid the senses introduces additional observational uncertainty and risk of
theory-laden observations. However, this should not deter the scientist. Continual improvement to
measuring devices as well as corroboration can increase trust in acquisition of indirect knowledge.
Detectable unobservables, I argue, are well described by their properties. For example, an
electron cannot be directly observed, but is characterized by its measured mass, charge, and spin.
Measurement of a positive charge ensures an electron was not observed. Although the role of an
electron has changed radically over time, from ancient Greek atoms to Bohr’s atomic model to
modern quantum field theory, its characterizing properties have remained more consistent.

Let’s now consider undetectable unobservables, or ‘objects’ unobservable with modern scientific
capability, but posited for theoretical or explanatory reasons. I argue these undetectable
unobservables are comprised of relational properties (defined in Section 3.3.2) to other observables
or detectable unobservables. For example, properties of the number 2 include being ‘more than
1’ and ‘less than 3’. For a more physical example, consider dark matter, which does not appear
to interact with electromagnetic radiation and thus is extremely difficult to detect. This matter
is posited to account for 85% of matter in the universe, explaining discrepancies in various
astrophysical observations. However, had these discrepancies not been observed, there would be no
reason to posit dark matter. In general, scientists should not commit to undetectable unobservables
that are not necessary for describing the workings of other observables or unobservables. Thus,
undetectable unobservables exist relationally to more substantiated aspects of scientific theories.
This will be further elaborated in Section 3.4.3’s discussion of detectable and auxiliary properties.

3.3.2 Deriving Properties

Despite the rich metaphysical literature on the nature of properties (Orilia and Paolini Paoletti,
2022), this work will not delve into nuanced classifications and types of properties. Instead

2Since this work focuses on the philosophy of science, I will not delve into details of the bundle theoretic debate,
e.g. universals versus tropes or identity of indiscernibles. Such discussion can be found in (Van Inwagen and
Zimmerman, 1991; Loux, 2001).

3The skeptic can argue that our senses might be wrong, e.g. dreams or hallucinations. I will not address such
skeptic scenarios, but assume that our senses are reliable.
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it focuses on the distinction between relational and non-relational properties. Distinct from
a relationship – which is borne between one thing and another (in certain cases to itself) – a
relational property is the property of bearing a relationship to something (MacBride, 2020). For
example, if a bears relationship R to b, then a possesses the relational property of ‘bearing R
to b’ and b possesses the relational property of ‘a bearing R to it’. Meanwhile, non-relational
properties refer to properties something has of itself.4. Combining ideas from bundle theory and
class nominalism, I will now demonstrate how all properties (and, thus, objects) are derivable
from relationships, establishing the fundamental nature of relationships.

Let’s begin with non-relational properties, which appear less intuitively connected to relation-
ships. For observables, I use the commonplace non-relational property of color5 as an example.
If everything was green – i.e. we had no distinct perception of the colors red, blue, orange,
etc. – we would not identify color as a property. This means we would not attribute to, say,
a turtle the property of being green. In this fictional world, a turtle would be identified and
categorized with other turtles via properties such as shell hardness and swimming ability. However,
relative to other objects or animals (which we have established are simply bundles of properties),
there would be no shared or differing property of greenness. This logic applies to unobservables
as well. For example, spin is an electron property because some electrons are spin-up while
others are spin-down. If all electrons were spin-up, the spin property would be redundant to
our electron theory. Therefore, along the lines of class nominalism (Rodriguez-Pereyra, 2019),
I argue that non-relational properties (of both observables and unobservables) are defined only
in relation to similar and distinct non-relational properties.

In Section 3.3.1, I leveraged ideas from bundle theory to argue that objects are, from a set
theoretic perspective, simply sets of properties. In the turtle example, the turtle ‘object’
is instantiable as a set of properties,

turtle={green, hard shell, swims, ...}. (3.1)

The last paragraph, leveraging ideas from class nominalism, further established the relational
nature of non-relational properties. In the turtle example, the green ‘property’ is instantiable
as a set of all the objects we experience as green,

green = {turtle, pea, clover, grass, ...}. (3.2)

However, (3.2) appears to be a simple semantic shift from (3.1) – instead of objects as sets of
properties, properties are sets of objects. While it may seem circular, I argue that this semantic
shift is critical to enable infinite regress and an entirely relational recursion.

4What I refer to as relational (non-relational) properties are often labeled “extrinsic” (“intrinsic”) properties in
the literature. However, granted concerns over properties which are both intrinsic and relational (Marshall and
Weatherson, 2018), I refrain from such nomenclature.

5Although colors are often classified as relational properties, I mean them in the simple, intrinsic, non-relational,
non-reducible, and qualitative sense of Color Primitivist Realism (Maund, 2022). The argument can also be
extended to any other non-relational property with multiple determinates – e.g. mass and shape.
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To illustrate this, plug the green property set (3.2) and others into the turtle object
set (3.1)6, resulting in expanded set,

turtle={green={pea, clover, grass, ...},

hard shell = {armadillo, snail, roly-poly, ...}, (3.3)

swims = {dolphin, frog, fish, ...}, ...}.

Recursively expanding this set, by plugging in property sets constituting the objects and object
sets constituting the properties, generates an extremely large set of subsets.

Ontologically, the key question is whether the set is finite or infinite. An infinite set implies
the recursion is infinite, meaning neither objects nor properties need be fundamental7. However, a
finite set necessitates fundamental properties and/or objects as the set’s base elements. If we could
simply assume there were infinite objects and/or non-relational properties, the sets would be infinite
and the challenge would be easily resolved. While such an assumption appears highly non-trivial,
I argue it does not matter. Instead, relational properties offer a far easier path to infinite regress.

The turtle set of (3.1) lists generic non-relational properties, applicable to all turtles. However,
describing a specific turtle, e.g. turtle-Ted, necessitates relational properties. In fact, I argue
turtle-Ted bears infinite relational properties. To name a few, turtle-Ted is ‘2 inches from
turtle-Bob’, ‘1 meter from his food bowl’, and ‘2,000 miles from Paris’. Assuming space is infinite
or has infinite resolution, turtle-Ted possesses infinite relational properties solely regarding his
distance to other spatial points8. In addition to turtle-Ted, these relational properties apply
to infinite spatial points, e.g. on the surface of a 2,000 mile radius sphere surrounding Paris.
Therefore, achieving the desired infinite regress simply requires: 1) expanding the turtle-Ted

object set with these infinite relational properties, 2) expanding those infinite relational property
sets with the infinite object sets sharing those properties, and 3) continued infinite recursive
expansion of the object and property sets. In this way, relational properties enable infinite regress,
or as Stachel et al. (2006) eloquently put it, “relations all the way down”.

3.4 Arguments for Ontic Structural Realism

Granted previous arguments, objects and properties are reducible to relationships. ontic structural
realism (OSR), typically associated with French and Ladyman (2011) and promoted in this
work, holds that relationships are the only fundamental metaphysical primitive – properties
and objects are secondary.

This may seem shocking and counter-intuitive. How can there be relationships without any
‘relata’ – i.e. objects or properties to relate? Can this theory withstand pessimistic induction?
Even accepting OSR, how could the realist identify which relationships are worthy of commitment?
What implications, if any, would this philosophical view have for science? In this final section,
drawing inspiration from modern physics and the history of science, I will address each of
these questions – defending OSR against key criticisms and bolstering its merits relative to
other forms of scientific realism.

6To prevent trivial infinite regress by circularity, each expansion of an object/property set must exclude that
object/property and any earlier objects/properties from which it was expanded.

7Section 3.4.1 will address criticisms on the basis of ‘relations without relata’.
8Similarly, there are infinite relational properties pertaining to metrics such as relative height, weight, speed, etc.
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Figure 3.1: Visualization of a relations-based ontology, in which bundles of relationships constitute
‘relata’, enabling infinite regress. Zooming into the ‘relata’ of relationships reveals that they are
simply further bundles of relationships.

3.4.1 Relations Without Relata?

Among the strongest objections to OSR is the challenge of ‘relations without relata’ (Psillos, 2001;
Busch, 2003; Chakravartty, 2007; Ainsworth, 2010; Briceno and Mumford, 2016). Namely, if
neither objects nor properties are fundamental, there is nothing to have relationships between.
How can there be relationships without ‘relata’?

Chakravartty (2007) challenges the explanatory value of the ontic structural framework, arguing
that the relationship-relata dependence is a necessary conceptual dependence. Thus, forms of
scientific realism which treat both structures and entities as fundamental, i.e. semirealism, have
superior explanatory power. However, in defining semirealism, Chakravartty argues that properties
are derivable from relationships and relationships are derivable from properties. Thus, he admits
relationships are fundamental, but maintains the fundamental nature of properties largely to
avoid ‘relations without relata’. I instead argue that ‘relations without relata’ is a non-concern
for OSR, minimizing potential benefits of semirealism over OSR.

While the counter-intuitive nature of OSR arguably stems from difficulties in comprehending
the nature of infinite regress, Figure 3.1 illustrates how ‘relationships without relata’ are not
necessarily problematic. Although the vertices appear to be entities, i.e. objects or bundles of
properties, zooming into a vertex reveals it is a collection of further vertices and edges. To be
concrete, let’s return to the turtle example, in which the first blue graph represents relationships
between animals. These relationships imbue a turtle with its high-level observable properties –
i.e. greenness, shell hardness, swimming ability, etc. Zooming into a turtle vertex, the turtle
is comprised of an orange graph of relationships between its organs. For example, one vertex
represents the turtle’s skin and another, its brain. The organs differ on or share properties such
as texture, softness, etc. Zooming into the brain vertex, we find another, this time purple, graph
describing relations between different brain constituents – e.g. grey matter, white matter, nerve
cells, and blood vessels. Zooming again into any vertex will reveal yet another graph, giving rise
to further ‘objects’ or bundles of ‘properties’. Notice how each zoom-in reveals that these are not
‘relata’ in the typical sense of objects or properties, but bundles of relationships.

The key remaining question is whether this regression continues infinitely (“relations all the
way down”) or stops somewhere relationships connect fundamental entities (“relations part of
the way down”)? Although Section 3.3.2 presents an abstract argument for the former, one
could argue it does not account for our intuitive understanding of fundamental physical ‘relata’,
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dating back to the ancient Greek notion of the atom (stemming from the ancient Greek word
atomos for “uncuttable”). Even with fundamental relationships, it seems that there must also be
fundamental entities upon which these relationships act. Physically, “relationships part of the
way down” defines physical matter by relationships between fundamental ‘atoms’.

Of course, physics has come a long way since the time of ancient Greeks, and I argue that
modern quantum theory enables a physical “relationships all the way down” ontology – as desired by
OSR. The 20th-century advent of quantum mechanics introduced probabilities into the description
of fundamental particles, governed by wavefunctions. Underdetermination of the individuality
of quantum particles9 largely motivated Ladyman (1998)’s transition to OSR. Alternatively, the
Ithaca interpretation of quantum mechanics challenges physical ‘relata’ via Mermin (1998)’s
argument that internal correlations, encoded by the state and wavefunction, comprise physical
reality. However, I believe that it is the more recent development of quantum field theory (QFT)
which most radically shifts our understanding of ‘fundamental particle’ ontology. Namely, in QFT,
particles emerge as manifestations of a field – and what is a field, if not relational? Mathematically,
a field is defined as an algebraic structure consisting of an infinite system of real or complex
numbers, such that addition, subtraction, multiplication, and division of any two numbers again
yields a number of the system (Dirichlet et al., 1999). Structuralists, such as Shapiro (1997) and
Resnik (1997), define a system as an instantiation of structures, or places that stand in structural
relations to one another. Derivatively, fields do not describe objects, but relative positions within
structures. For example, in Section 3.3.1’s discussion of undetectable observables, the number
2 is defined as less than 3 and more than 1. Attempts at instantiating these structures, e.g.
via sets, pose a challenge for ontological commitment, since any instantiation has isomorphic
counterparts. For example, Benacerraf (1965) demonstrates that {{{Ø}}} and {Ø, {Ø}, {Ø, {Ø}}}
are equally suitable for playing the role of 3. In fact, as an eliminative structuralist, Benacerraf
denies existence of abstract mathematical objects with properties other than their place in a
relational structure. In conclusion, if we aim to make fundamental particles the ‘relata’ of physical
existence, QFT’s mathematical description of particles as fields offers a purely relational ontology.

Rovelli (2018) offers an alternative means to a relations-only ontology. He claims that
relationality is ubiquitous in most of modern physics:

In classical mechanics the velocity of an object has no meaning by itself: it is only defined with
respect to another object. The color of a quark in strong-interaction theory has no meaning by
itself: only the relative color of two quarks has meaning. In electromagnetism, the potential at a
point has no meaning, unless another point is taken as reference; that is, only relative potentials
have meanings. In general relativity, the location of something is only defined with respect to the
gravitational field, or with respect to other physical entities; and so on. (Rovelli, 2018)

However, he believes that quantum theory “takes this ubiquitous relationalism to a new level”.
By this, Rovelli refers to Relational Quantum Mechanics (RQM) (Rovelli, 1996), which rejects
commitment to the quantum particle and its wavefunction – as originally argued for by Schrödinger
and assumed in our previous fundamental particle discussion. Instead, Rovelli argues that, like
velocity, the value of any quantum physical system quantity is only meaningful in relation to

9Quantum mechanical wavefunctions appear to attribute the same intrinsic and relational properties to distinct
particles, violating Leibniz’s principle of the identity of indiscernibles (Busch, 2003).
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another system. Candiotto (2017) explains that RQM: 1) asserts nonexistence of a perspective-
independent description of the universe, 2) argues against the notion of ‘objects’ as ‘entities’
possessing intrinsic properties, and 3) proposes an ontology relativizing properties or states of
‘objects’ to other ‘objects’. Thus, RQM instantiates the OSR ontology10, where physical interactions
between systems and instruments are viewed as primitive relations. Candiotto argues that, by
engendering a new understanding of ‘objects’, RQM addresses the challenge of ‘relations without
relata’. Dating back to Aristotle, relationships have been thought of as a properties of objects.
However, Candiotto claims “RQM invites us to think of reality not as starting from things, which
would be then connected by relationships, but as processes that manifest ‘things’ as the result of
their intertwining”. Namely, quantum mechanics describes interactions between processes – or
transitions between interactions. Thus, reality is comprised of a series of events, not objects. In
RQM, relations are not connections between objects, but modalities of processes. They are the
structures through which systems interact and communicate. Thus, Candiotto argues that RQM
“provides a description of reality that poses relations as real and prior to objects”.

Although I began this section by noting substantial philosophical concerns over ‘relations
without relata’, there exist several arguments beyond those presented – drawing largely from modern
quantum and general relativity theory – promoting “relationships all the way down” (Schaffer,
2003; Saunders, 2003; French and Krause, 2006; Ladyman et al., 2007). As Rovelli (2018) claims,
“rather than letting our philosophical orientation determine our reading of [physics, we should] be
ready to let the discoveries of fundamental physics influence our philosophical orientations”.

3.4.2 Pessimistic Induction?

Having alleviated the ‘relations without relata’ concern, commitment to structures alone proves
highly effective at resolving the key criticism of scientific realism – pessimistic induction. Entity
realism and semirealism argue for the fundamental nature of entities. However, in the history of
science, entities have proven the aspect of scientific theories most prone to significant modification.
Take, for example, the transition from phlogisten to oxygen or the ever-changing electron.
Meanwhile, mathematical structures, governing the relationships of a theory, are generally
preserved. As scientific knowledge grows, old scientific theories are still often found correct,
but in more restricted settings than those described by the novel, generalized theory. For example,
Newtonian mechanics is a limiting case of quantum theory, for macroscopic systems experiencing
significant decoherence. In light of pessimistic induction, commitment to relationships rather
than entities appears far more robust to theory change. Next, I explore how a realist can
determine OSR structures worthy of commitment.

3.4.3 Which Structures are Worth Commitment?

Beyond ‘relations without relata’, Chakravartty (2007) criticizes OSR and bolsters semirealism
in ability to determine aspects of a scientific theory worth commitment.

10Because RQM explains structures through which we know the world’s nature, Candiotto (2017) argues it
supports ontic, not epistemic, structural realism. She claims that relationships are the building blocks of reality,
constituting observer-independent information. Information is exchanged via physical interactions and interactions
are primitive to the structure of matter.
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Chakravartty claims that semirealism, with commitment to both relationships and properties,
is well-suited to providing a clear distinction between entities that merit realist commitment
and those that do not. To do so, he introduces an epistemic distinction between detection and
auxiliary properties of unobservables. Detection properties are detectable causal properties or,
more specifically, properties that are “causally linked to the regular behaviours of our detectors”
(i.e. observables and detectable unobservables). Meanwhile, auxiliary properties are any other
properties attributed to unobservables (i.e. undetectable unobservables). Chakravartty argues
simply and practically for realist commitment to detection properties. Thus, scientific investigation
must find grounds for discarding auxiliary properties or transforming them into detection properties.
Chakravartty further argues that causal detection properties worthy of commitment must provide
a minimal interpretation of their governing mathematical equations.

Anything that exceeds a minimal interpretation, such as interpretations of equations that are
wholly unconnected or only indirectly connected to practices of detection, goes beyond what is
minimally required to do the work of science: to make predictions, retrodictions, and so on. The
excess is auxiliary. (Chakravartty, 2007)

Chakravartty believes that neither entity realism nor structural realism are capable of providing
such a clear selection criteria for realist commitment, since neither stance is committed to both
entities and strutures. He argues that it is the relationship of the detection properties to the
measurement apparatuses which enables such a delineation.

However, in light of our arguments for OSR, I challenge the necessity of properties for
Chakravartty’s demarcation. Ultimately Chakravartty is concerned with the minimal interpretation
of mathematical equations. Although equation variables may be attributed to properties or objects,
I argue that, alternatively, such variables are non-individualistic and can be replaced by further
expressions. Furthermore, the detection properties described by Chakravartty are simply relational
properties constituting observables and detectable unobservables, which I established in Section 3.3
are fundamentally relational. In this way, Chakravartty’s proposal for a semirealist selection
criterion, also seems well-suited to OSR. Namely, in the immense graph of relationships constituting
the world, OSR suggests increased realist commitment to relationships closer linked to a scientist’s
direct sensory experiences. If a scientist can gain detection evidence of an unobservable (comprised
of relationships), it moves from auxiliary to detectable and is worthy of commitment.

3.4.4 Implications for Science?

I conclude by discussing OSR’s implications for the future of physics, and science more generally.
Specifically, I present the most pressing debate in modern physics: quantum gravity. At a high-
level, general relativity (GR) and QFT employ incompatible ideas of space and time (Rickles
et al., 2006). Namely, GR is background-independent, positing a dynamic metrical structure and,
hence, geometry of spacetime. Meanwhile, QFT is background-dependent, employing a fixed metric.
Among the first serious attempts to resolve this incompatibility were background-dependent,
covariant perturbation quantizations – i.e. gravitons, string theory, and ‘supergravity’ theories.
However, problems with these old covariant perturbation methods arose largely from imposed
background-dependence. Namely, sustaining various metrics as small perturbations becomes
challenging at the Planck scale, with a flat and fixed background. This prompted the development
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of background-independent, non-perturbative canonical quantization methods – i.e. loop quantum
gravity – which quantize the full metric. Interestingly, in loop quantum gravity, spin networks form
a basis for quantum states and provide a delocalized structure, encoding relational features – i.e.
relations between fields. A physicist committed to OSR would clearly be attracted to the relational
structures of background-independent theories. In fact, this seems where most of the modern
physics community is headed (Rickles et al., 2006). As argued by Rickles (emphasis my own),

the fundamental ontology of [quantum gravity] is given by relational structures rather than
individual objects; inasmuch as objects exist at all, they derive their properties and individuality
from the relational network in which they are embedded. (Rickles et al., 2006)

Relationality in GR and QFT has largely informed the growing popularity of OSR. Such OSR is
now leading physicists to commit to relational structures and theories of quantum gravity. This
serves as a precedent for how OSR can influence theory selection in all domains of science.

Figure 3.2: TURTLES = RELATIONSHIPS
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Yesterday is history, tomorrow is a mystery, but today is a gift.
That is why it is called the present.

— Master Oogway (Kung Fu Panda)
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4.1 Introduction

Arguably, one of the most iconic films of my childhood was Kung Fu Panda. As a 10-year-old,
I was particularly struck by the wise words of turtle sensei Master Oogway:

Yesterday is history, tomorrow is a mystery, but today is a gift. That is why it is called the present.

I did not realize it then, but this simple statement encapsulates several fundamental aspects of the
human temporal experience – namely, the knowledge asymmetry. We generally regard the past
(“yesterday”) as fixed, known, and unchanging (“history”). Meanwhile, the future (“tomorrow”) is
uncertain and modifiable (a “mystery”). Finally, the present (“today”) is distinguished, vivid,
and special relative to other moments in time (a “gift”). We feel control over the present and
future in a way we do not about the past. The past appears behind us, to be forgotten, while
the future lies ahead, yet to be realized.

However, this common intuition for time – informed by day-to-day experiences – makes several
assumptions about the metaphysics and ontology of time. Most modern philosophers and physicists
believe that time exists analogously to space, constituting a 4th-dimension in an unchanging Block
Universe. Others believe the universe is a growing block, in which only the past and present
exist. However, this work argues for past openness and Many-Worlds Presentism – in which
only the present exists, as a timeless ensemble of momentary possible worlds. A Many-Worlds
Presentist “best match” method is proposed to account for the knowledge asymmetry, providing
strong connections to the thermodynamic asymmetry.

4.2 Temporal Asymmetries

While the universe appears symmetric along its spatial dimensions, time appears distinct from
space because of several significant temporal asymmetries (Dainton, 2016). I will now define the
two temporal asymmetries – knowledge and thermodynamic – considered in this work.

4.2.1 The Knowledge Asymmetry

The knowledge asymmetry is defined loosely, encompassing what Callender (2021) refers to as
the epistemological, mutability, and psychological arrows of time. The epistemological arrow
accounts for perceived greater knowledge about the past than the future. For example, I know
yesterday’s winning lottery number, but not tomorrow’s. The mutability arrow encompasses
perceived ‘openness’ or indeterminacy towards the future, which is not perceived towards the
past. The future appears mutable, while the past appears fixed for all eternity. Finally, the
psychological arrow describes our differing attitudes towards the past and future. For example, the
‘argument from pain’ describes general preference for pain in the past rather than the future. The
psychological arrow also accounts for perception of a moving ‘now’ or the ‘flow’ of time, in which
present events transition from future to past. Overall, the knowledge asymmetry encompasses
asymmetries based on human temporal experiences, psychology, and beliefs.
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4.2.2 The Thermodynamic Asymmetry

The 19th-century advent of thermodynamics assured physicists that the temporal asymmetry and
perceived ‘arrow of time’ are not just experiential, but physical. Specifically, the thermodynamic
asymmetry, governed primarily by the 2nd Law of Thermodynamics1, accounts for macroscopic irre-
versible processes and generally observed increases in entropy. For example, eggs fry and ice-cubes
melt in hot water, but eggs do not “un-fry” and ice-cubes do not spontaneously form in warm water.

From the Past Hypothesis to local-branch theories, this asymmetry’s emergence at microscopic
levels is largely debated (Reichenbach, 1956; Albert, 2001; Wallace, 2011; Rovelli, 2022). While I
will not delve into such debates, for later reference I will briefly describe statistical mechanical
entropy increase. Namely, the ergodic system-state has a proclivity to move into state-space regions
occupied by high-entropy macroscopic states (macro-states), which possess larger state-space
volumes and more compatible microscopic states (micro-states).

Finally, the relationship between the thermodynamic and knowledge asymmetry is debated.
Although Horwich (1987)’s derived explanatory hierarchy treats them independently, (Rovelli,
2022) believes the thermodynamic asymmetry is the most fundamental temporal asymmetry.

No phenomenon reveals any detectable difference between the past and the future directions of
time, unless it includes a process irreversible in a (general) thermodynamic sense. This is a fact.
(Rovelli, 2022)

As will be elaborated in Section 4.4.2, Rovelli argues that past memories and records are
thermodynamic mechanisms. By the end of this essay, I hope to establish a strong link between
the thermodynamic and knowledge asymmetries.

4.3 Temporal Ontologies

Following from Dainton (2016) and Le Bihan (2020)’s descriptions, I will briefly introduce
three established metaphysical ontologies of time: 1) Eternalism, 2) the Growing Block Theory,
and 3) Presentism. I emphasize key benefits and drawbacks of the theories, informing later
arguments for Many-Worlds Presentism.

4.3.1 Eternalism

In Eternalism, also known as the Block Universe theory, all temporal existence is equally real
(Smart, 1963; Mellor, 1998; Sider et al., 2001). Rather than a 3-dimensional space modulated by
the passage of time, the Block Universe treats spacetime as a 4-dimensional unchanging block.
The past, present, and future all exist, but the present is not distinguished and time does not ‘flow’.
There are two key challenges for Eternalism: 1) perceived temporal passage and 2) truthmaking.

Granted a non-dynamic Block Universe, how and why would humans perceive time as ‘flowing’
and distinct from space? Several philosophers have attempted to argue that this dynamic temporal
perception is consistent with an underlying Block Universe. Mellor (2001) cites McTaggartian
notions of change to argue that time is the ‘causal dimension’, enablinging our actions and

1The exact source of thermodynamic temporal asymmetry is disputed. While most claim it is the 2nd Law of
Thermodynamics, some (Uffink, 2001; Brown and Uffink, 2001) argue it is a separate “Minus 1st Law”. However,
spontaneous movement from non-equilibrium to equilibrium, or lower to higher entropy, is generally accepted.
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notions of persistent identity. Meanwhile, leveraging modern psychology, cognitive science,
neuroscience, and biology findings, Callender (2017) argues human perception of simultaneity and
a common “now” is artificial and illusory. Hartle (2005) uses simplistic information gathering
and utilizing systems (IGUSs) to demonstrate how, in a Block Universe, evolution would
prefer human temporal perception.

Finally, truthmaking acts as a two-sided sword for Eternalism (Le Bihan, 2020). Parts
of the Block Universe’s spacetime can act as truthmakers for past and future statements.
While such truthmaking is consistent with a determined and fixed past, it poses a threat of
existential future determinism.

4.3.2 The Growing Block Theory

Concerns over this future determination led Broad (1923) to propose the Growing Block Theory
(GBT). In line with the knowledge asymmetry, the GBT holds that the past and present exist, but
the future does not. “Present” simply labels the most recent time-slice added to reality, meaning
there is no significant tensed distinction between the present and past. Unlike the non-dynamic
Block Universe, the GBT posits a dynamic, continuously growing reality.

The GBT has been challenged on several fronts, especially for its temporal directionality and
dynamics. Dainton (2016) argues that the Growing Block’s ‘arrow of time’ does not neccesarily
align with the universe’s ‘arrow of time’, as exemplified in a Gold Universe – i.e. a universe in
which entropy increases from its conception until a moment of contraction, after which entropy
decreases. Beyond temporal orientation, Dainton challenges the dynamics of the Growing Block.
Instead of growing, could the universe be seen as shrinking? If time slices can be created or
removed at one end of universal reality, what bars their creation or removal at the other end?
In this way, Dainton disputes the very nature and existence of time, beyond the distinguished
present. However, a major epistemic objection to the GBT is, in fact, the individual’s inability
to know whether they exist in this objective, distinguished present. Miller (2018) thus promotes
a version of the GBT in which objectively present experiences are subjectively distinguishable
from identical objectively past experiences. However, this ‘distinguishability imperative’ requires
making past-tensed truthmakers identical to present-tensed truthmakers. Therefore, Miller argues
supporters of the GBT should instead support Presentism.

4.3.3 Presentism

Belief in only the present’s existence constitutes Presentism. There are multiple flavors of
Presentism, notably: Solipsistic, Modal, and Dynamic (Dainton, 2016). Before describing these, I
should note that a key objection to Presentism is truthmaking. Like Eternalism posed a threat of
future determinism, Presentism poses a threat of past indeterminism. However, this work will
establish the openness (or indeterminacy) of the past, alleviating this concern.

Solipsistic Presentism is the most radical version of Presentism, arguing that nothing exists
beyond this present. To account for our beliefs in the past and future, Solopsistic Presentism must
rely on a Boltzmann brain type skeptic catastrophe – i.e. a highly-unlikely statistical fluctuation
in the universe’s heat-death forms a brain-structure perceiving my present experience and beliefs
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of the past and future. However, even this extreme Boltzmann brain reductio ad absurdum is
incompatible with Solopsistic Presentism, since the low-probability emergence of a Boltzmann
brain would require significant time before the present. If reality was reduced to a single present
instance of time, no physical models would be valid and time-passage would be illusory. Thus,
Solipsistic Presentism appears highly problematic in light of our experiences, intuitions, and
theories of physics. I, therefore, will not consider it any further in this work.

Many-Worlds Presentism holds that many presents can and do exist. Namely, reality includes
many momentary presents that are not temporally related and do not succeed each other, but
constitute brief co-existing, self-contained worlds. At any given time, we can only inhabit one such
world, meaning our perception of time amounts to hopping between these distinct, possible worlds.
It appears unclear how such a construction would achieve our perceived, continuous experience of
reality. Many-Worlds Presentists propose “best match” methods – which choose and order the
subset of existing worlds that we will inhabit – in attempt to reconstruct our continuous realities
and enable our perception of time. A key results of this work is Section 4.5.3’s proposal of a “best
match” method. Although this proposed method does not provide a unique ordering, as desired
by De et al. (2019), it draws inspiration from the thermodynamic asymmetry to account for our
epistemic beliefs about the past and future – i.e. knowledge asymmetry.

Finally, Dynamic Presentism is a dynamic theory of time, in which a succession of instantaneous
presents constitute reality. The present comes into existence temporarily, before being annihilated
and replaced by a new present. Dainton (2016) discusses several challenges for Dynamic Presentism,
which I will not go into here. Instead, Section 4.5.1 presents arguments for the benefits of Many-
Worlds over Dynamic Presentism, for modal reasoning and truthmaking.

4.4 The Argument for Past Openness

Barring the possibility of time-travel, we cannot physically access the past or future. Towards the
past, humans merely have present physical access to memories and records – i.e. mental states
and subsets of the universe’s physical state. Trust in beliefs surrounding these memories and
records produces a sense of past knowledge. Why, however, do we believe memories and records
provide evidence of a fixed past, but no equivalent evidence exists for the future? Why do we
believe we have greater epistemic access to the past than the future? Why are we more confident
in past than future beliefs? In the following sections, I will challenge such beliefs, which comprise
the knowledge asymmetry. Specifically, I argue that we should not be confident in past beliefs
and, therefore, that the past must be open – analogous to future openness.

4.4.1 Past Skepticism

The fixed-past intuition arises from the belief that memories and records provide information
about past existence, acting as truthmakers about past statements. Meanwhile, we do not believe
predictions are truthmakers of the future. Thus, the future appears largely uncertain. For example,
I feel entirely certain that the sun rose yesterday. While I feel almost entirely certain that the sun
will rise tomorrow, I cannot say I am entirely certain. What if the sun spontaneously combusts
over night? What if Earth is hit by massive space debris and launched out of orbit? While
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extremely unlikely, the mere possibility of such events bar me from expressing full certainty in
the future, even for something as simple as the sunrise.

This past-future knowledge asymmetry may seem basic and fundamental. However, I argue that
it is challengeable via skepticism. For example, why do I feel confident that the sun rose yesterday?
I have memories and records – e.g. photos, videos, and news reports – indicating that the sun did
rise. However, a skeptic would argue that the memories could be dreamed or hallucinated and the
records tampered or fake. I could exist as a Boltzmann brain, meaning there is no actual sun to
rise. I could be part of an alien simulation that just started and was imbued with memories of the
sunrise, so as not to raise any suspicions. Realistically, either of these realities are highly unlikely.
However, nothing physically rules out their possibility. Therefore, in the same way that I cannot
be entirely certain the sun will rise tomorrow, I cannot be entirely certain the sun rose yesterday.
Furthermore, while Boltzmann brains or alien simulations may seem unrealistic, we realistically
do dream, misremember, and hallucinate past realities – all establishing uncertainty in the past.

4.4.2 Past Non-Robustness

The previous section illustrated how skeptics can challenge the reliability of past memories and
records. Beyond such skepticism, I argue that past knowledge is not robust.

Beginning with memory, Hartle (2005) describes humans as glorified IGUSs. Although we
gather high-resolution information about present surroundings, evolutionary pressures have caused
us to develop schematic memory. Namely, our memories do not store high-resolution present
moments, but instead extrapolate and store important low-resolution information, forming a
schema that guides our future actions and behavior. In this process, even someone with perfect
memory would forget most present details, over time. In reality, humans do not possess perfect
meory – our extrapolation, memory storage, and memory recall mechanisms are all error-prone.
We commonly misremember or forget information, no matter how important or recent. For
example, I frequently forget where I put my keys a few minutes ago. At a spelling bee, I may
misremember how to spell words that I normally spell easily.

Rovelli (2022) claims that memories are a specific type of record. Via information theory,
he argues that all records – e.g. memories, photographs, footprints, and DNA – are “natural
mechanisms converting past low entropy into macroscopic information”. By Landauer’s Principle,
record destruction – in which information is converted to heat and lost to the environment
– results in entropy increase (Bennett, 2003). Granted the thermodynamic trend towards
increased entropy, physics dictates that past information is naturally lost over time. For example,
memories are forgotten, photos fade, footprints blow away in the breeze, and DNA degrades. In
the same way we are less certain about the distant future, physics ensures we will be less
certain about the distant past.

4.4.3 Past Corroboration

Drawing inspiration from the philosophy of science, I will now argue that humans attribute
certainty to past and future knowledge via a single method: corroboration.

Scientific theories are among the most accurate means of confidently predicting future
phenomena. However, philosophers of science debate whether these theories truly reflect reality.
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Scientific realism offers a positive epistemic attitude towards our best theories, claiming real-world
existence of both observables and unobservables (Chakravartty, 2017). Central to scientific realism
is the miracle argument (Brown, 1982), which claims the incredible success of our scientific theories
would be a miracle if untrue. Such scientific theory success is primarily quantified and established
through corroboration. The argument from corroboration holds that the more ways a scientific
theory is independently verified, the more miraculous it would be if untrue (Chakravartty, 2017).
Thus, we place more confidence in the ability of corroborated scientific theories to predict the
future, attributing more certainty to their predictions.

I now argue that corroboration, beyond bolstering certainty in future knowledge, also bolsters
certainty in past knowledge. If several independent memories and records exist indicating a
past event, it would be miraculous if that past event did not occur2. For example, a detective
gathers distinct records to increase certainty in a specific theory of the past. The more evidence
available to support a belief of the past, the more reason to believe in that past. Therefore,
it is unsurprising that we are usually pretty certain in large-scale past events or trends. For
example, I am confident I did an undergraduate engineering degree. I have vivid memories of the
university, my classes, and my friends. I also have access to various records, such as photos, a
graduation diploma, and online records of my transcript. Therefore, while I cannot be completely
certain, I am pretty confident that I did an engineering degree.

However, zooming into smaller-scale past events, there exist fewer memories and records offering
evidence of those events. Limited access to records of a past event magnifies the unreliability and
non-robustness of those records. For example, while I am pretty certain of my engineering degree,
I am less certain about which classes I took. Arguably, the strongest evidence is my transcript
(which lists all my classes), but what if it contains a mistake? I took classes with friends, but
what if they mix up the classes we took together? Thus, I am less certain about which classes
I took during my degree than the fact that I did the degree. Pushing this further, I am almost
completely uncertain about what I ate for lunch on my first day of classes. I have no memory
of the meal. I potentially have a time-stamped photo of food from that day, but how can I be
sure it was my lunch and not dinner? What if the picture is of someone else’s food?

Hopefully, by now, it is clear that our knowledge does not ‘fix’ the past. Past records and
memories are unreliable and non-robust. We misremember the past and physics dictates that past
evidence will eventually be lost. However, we attribute certainty to past events according to how
well they are corroborated by independent records and memories. Corroboration helps minimize
the effects of unreliable records and makes past theories more robust. Generally, we are more
confident in coarser-grain past events and trends. In all, assigning probabilities to past events is
analogous to assigning probabilities to future predictions. This is the argument for past openness.
However, as will be discussed in Section 4.5.3, the past need not be as open as the future.

4.5 An Argument for Many-Worlds Presentism

Granted Section 4.4’s arguments, I will now explore the implications of an epistemically open
past for the ontology of time. Specifically, in light of past openness, I will argue for the merits

2Of course, such a miracle can occur – e.g. the previously discussed Boltzmann brain or alien simulation skeptic
catastrophes.
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of Presentism over the GBT and Eternalism. In doing so, I propose a “best match” method
which links the knowledge and thermodynamic asymmetries.

4.5.1 Epistemology and Ontology

As mentioned at the beginning of Section 4.4, we cannot access the past (future) physically,
only epistemically via physical access to present records and memories (predictions). Section
4.4 further establishes past openness, analogous to future openness. Thus, there appears no
epistemological distinction meriting an ontological distinction between the past and the future.
Furthermore, as discussed in Sections 4.3.1 and 4.3.2, future openness establishes ontological
preference for the future’s non-existence (as in the GBT) over the future’s existence (as in
Eternalism). By the same logic, past openness should establish ontological preference for the past’s
non-existence. To best account for both past and future openness (non-existence), Presentism
appears the best ontology of time.

Although there exist several forms of Presentism, as discussed in Section 4.3.3, I will now argue
that Many-Worlds Presentism is preferable, on the basis of modal reasoning and truthmaking.
Even if I knew my own past, present, and future to exist in a specific way, I could still imagine
alternative possible realities. Although I would not exist in these alternative realities, why should I
deny their existence? In fact, Everettian quantum mechanics suggests a relative-state formulation,
with an objectively real universal wavefunction, in which all possible quantum measurement
outcomes are physically realized in some world (Barrett, 2018; Vaidman, 2021). Furthermore,
past and future openness limit certainty in our own past and future realities. Some may argue
this uncertainty is merely epistemic – i.e. there exists a singular past and future, whether we
know it or not. However, a core tenet of modal realism is the Principle of Plenitude, which
states that “absolutely every way that a world could possibly be is a way that some world
is” (Lewis et al., 1986). Many-Worlds Presentism’s commitment to the existence of all possible
‘past’ and ‘future’ worlds enables modal truthmaking about the ‘past’ and ‘future’, which Dynamic
Presentism does not (De et al., 2019)3. In conclusion, Many-Worlds Presentism appears best
suited to the modal nature of an open past and future.

4.5.2 Limited Present Epistemic Access

I now hope to alleviate Dainton (2016)’s expressed concerns with Presentism, bolstering past
openness and Many-Worlds Presentism as accurate descriptions of reality.

In particular, Dainton worries that existence of the present alone leads to implausible constraints
on the past.

[S]ince facts about the past are constituted by what exists now, the truth about the past is
restricted by whatever relevant evidence now exists. If we take “evidence” here to mean traces that
would enable human investigators to reconstruct accurately a past occurrence, the consequences of
this restriction are dramatic: the bulk of the past would vanish. The claim that only a minuscule
percentage of dinosaurs left fossilized remains would be false, since the only dinosaurs that existed
would be those that left fossilized remains! (Dainton, 2016)

3I use quotes around ‘past’ and ‘future’ to emphasize that they are perceived. In practice, they are present
realities we have inhabited or will inhabit.
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This argument, however, appears fallacious. Namely, it makes several strong assumptions, which
I argue are: 1) predisposed to rule out Presentism and 2) wrong or unfavorable in light of past
openness. To begin, Dainton assumes that there are “facts about the past”. However, Section
4.4’s argument for past openness establishes that there are no “facts” about the past. The
non-robustness and unreliability of records ensure that we can never be fully certain in a past
occurrence. At best, we attribute high likelihood to past occurrences. Arguably more problematic
are Dainton’s assumptions of “truth about the past” and that a past occurrence can be “accurately”
reconstructed, by which he commits to the ontological existence of a singular, true past. This
in and of itself directly contradicts Presentism’s commitment to the non-existence of the past,
which Section 4.5.1 argues is favorable in light of past openness and modal truthmaking.

Putting aside these anti-Presentist assumptions, Dainton’s argument does not actually appear
to reduce the merits of Presentism. Rather, it magnifies the limits of human knowledge and
consequences of the status of universal natural laws. By claiming that “the bulk of the past would
vanish” based on what “human investigators” could accurately infer from present evidence about
the past, Dainton seems to conflate human epistemic and ontic access to the past. In other words,
Dainton assumes that what we, as humans, accurately know about the past is all that existed in
past. However, humans have extremely limited epistemic access to the present. Knowing all that
exists in the present would require epistemic access to the full universal micro-state, which clearly
is beyond human capability. Therefore, most past evidence actually lies beyond human reach. For
example, while we may know of only a few dinosaur fossils, this does not rule out the possibility of
many more buried in unexplored territories. Furthermore, evidence of dinosaurs probably exists
beyond simple fossils, i.e. DNA particles floating in the air. Just because we have access to limited
present dinosaur records, does not mean we can or should dismiss the possibility that more could
exist beyond our epistemic reach. While we cannot be certain that millions of dinosaurs roamed
the Earth, we also cannot rule out the possibility that dinosaurs “existed” beyond “those that
left fossilized remains” – reiterating Section 4.4’s argument for past openness.

Even an omniscient human, with full access to the present universal micro-state, would not
necessarily be able to accurately reconstruct the past. Only if the omniscient human knows the
natural laws of the universe and if those natural laws are governing and deterministic, would the
omniscient human be able to accurately calculate past universal micro-states. However, it is highly
optimistic to assume humans will ever know the true natural laws – that is, if the natural laws
are even governing (Carroll, 2020). Furthermore, there are many arguments for indeterministic
natural laws (Hoefer, 2016), largely based on developments in quantum theory.

If anything, Dainton’s argument highlights limited human epistemic access to the present (not
just the past and future), which generates more past uncertainty and evidence for past openness.
In fact, the present epistemically accessible macro-state generally prohibits full certainty in past
events of interest. For example, imagine I have pudding in my mouth, a dirty spoon in my hand,
and a half-eaten pudding in front of me. Most likely, I put a spoonful of pudding from the bowl into
my mouth. However, unless I can verify that no stranger is currently nearby my house, how can I
dismiss the possibility of a stranger running into my house, taking half of my pudding, and putting
a spoonful of different pudding into my mouth? While highly unlikely, such a past seems physically
possible and would result in my present epistemically limited macro-state. In a less contrived
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Figure 4.1: An abstract depiction of the Many-Worlds Presentism reality.

example, I can feel that the pudding is cold. However, from this macroscopic knowledge alone, I
cannot tell whether the pudding was previously in the kitchen fridge or garage ice-box. In so much
as “the proof of the pudding is in the present”, my limited epistemic access to the present universal
micro-state prevents full certainty even in simple beliefs about the near-past of the pudding.

4.5.3 The Entropic Knowledge “Best Match” Method

I conclude by proposing a Many-Worlds Presentism “best match” method – the Entropic Knowledge
Method – which is compatible with past openness, accounts for the knowledge asymmetry, and
establishes an interesting link to the thermodynamic asymmetry.

Figure 4.1 abstractly visualizes the Many-Worlds Presentism ontology. Our currently inhab-
ited, instantaneous PRESENT world is represented by a star. The star is surrounded by grey
circles, representing alternative possible worlds that we do not currently inhabit. Under Many-
Worlds Presentism, all possible worlds exist simultaneously with the PRESENT. However, we
will ever only inhabit a portion of possible worlds. By hopping between different PRESENTs,
we perceive a passage of time.

To establish a sense of continuity between our inhabited PRESENTs, the Entropic Knowledge
Method imposes a constraint on our motion between PRESENTs. Namely, the PRESENT macro-state
must be compatible with the previously inhabited PRESENT and the next inhabited PRESENT’s macro-
states, via the natural laws. In other words, the trajectory of inhabited PRESENTs must obey the
dynamics of the laws of physics. This constraint enables sorting of the large set of possible worlds,
which exist under Many-Worlds Presentism, into smaller subsets of potential ‘past’ and ‘future’
PRESENTs. Furthermore, since the constraint is imposed at the macroscopic (not microscopic) level,
many possible worlds’ macro-states are compatible with the PRESENT’s macro-state – leaving the
‘past’ and ‘future’ open4. As illustrated in Figure 4.2, the PRESENT star is connected to blue circles
representing the multiplicity of physically possible ‘past’ PRESENTs and green circles representing
the multiplicity of physically possible ‘future’ PRESENTs. Ultimately, however, only some ‘past’
and ‘future’ PRESENTs are inhabited, defining the red trajectory of inhabited PRESENTs.

Perceived ‘past’ and ‘future’ openness arise from uncertainty in which ‘past’ worlds we inhabited
and ‘future’ worlds we will inhabit. Näıvely, this uncertainty could be quantified probabilistically

4If the constraint was imposed on the universal micro-state and the governing natural laws were deterministic,
only one ‘future’ and ‘past’ micro-state would be compatible, which is undesirable in our ‘open’ ontology.
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Figure 4.2: An abstract depiction of Many-Worlds Presentism’s open ‘past’ and ‘future’. The red
connected circles represent our trajectory of inhabited PRESENTs.

via a branch-counting type procedure5. Furthermore, each red ‘past’ and ‘future’ PRESENT has
its own sets of possible ‘past’ and ‘future’ PRESENTs. Therefore, once we move into a ‘future’
PRESENT, our current PRESENT star will become just one of many possible past PRESENTs. Moving
further into the ‘future’ opens up more possible ‘past’ PRESENTs and reduces our certainty that
we previously inhabited the star PRESENT.

As mentioned at the end of Section 4.4.3, although the past is open, this is not to say the
past is as open as the future. In fact, the knowledge asymmetry claims that we know more about
the past than the future. This is reflected in the Entropic Knowledge Method by imposing yet
another constraint on the inhabited PRESENTs. Namely, we are more likely to inhabit PRESENTs
which possess more possible ‘futures’ than possible ‘pasts’. In other words, we are more likely
to inhabit PRESENTs which are more open towards the future than the past. I will not go into
metaphysical arguments justifying this preference. However, it should be noted that this tendency
towards ‘future’ openness or uncertainty is analogous to the asymmetric motion of thermodynamic
macro-states from lower to higher entropy – i.e. motion towards macro-states occupying larger
state-space regions, with more compatible micro-states.

The thermodynamic trend towards higher entropy is statistical – governed by ergodic motion
in state-space. While thermodynamic systems generally tend towards higher-entropy micro-states,
they occasionally revert to low-entropy micro-states. Similarly, via the Entropic Knowledge
Method, we generally move towards PRESENTs with less ‘future’ than ‘past’ certainty. However,
we should occasionally expect to inhabit a PRESENT with less ‘past’ than ‘future’ certainty. For
example, when I forget where I put my keys, I have little certainty about the past few minutes,
but am very certain that I will spend the next few minutes searching for the keys. In this way,
a PRESENT’s relative ‘future’ to ‘past’ openness acts like a measure of entropy. The Entropic

5In light of well-established challenges for branch-counting in Everettian Quantum Mechanics (Saunders, 2021)
and given that there may exist infinite possible worlds, a more sophisticated technique – beyond the scope of this
work – would need to be developed.
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Knowledge Method can, therefore, reconstruct a trajectory of PRESENTs by mimicking statistical
mechanical motion towards high-entropy states. Our experienced knowledge asymmetry results
from inhabiting PRESENTs according to the laws of physics and ergodically traversing the ‘state-
space’ of possible PRESENTs, generally moving towards higher ‘entropy’.

In conclusion, Many-Worlds Presentism and the Entropic Knowledge Method appear well-
suited to past openness, account for our temporal experience, and establish a strong symmetry
between the knowledge and thermodynamic asymmetries.
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