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Q uantum State Tomography (QST), or the recon-
struction of the density matrix of a quantum
state via measurements, is critical to ensure the

proper functionality of qubits and quantum operations
in a quantum computer. In this work, we extend exist-
ing QST code based on Maximum Likelihood Estimation
from two to an arbitrary number of qubits and from one
to arbitrarily many energy levels. A 100x algorithmic
speedup is achieved over the original implementation.
However, the exponential scaling of the density matrix
makes this MLE-based algorithm infeasible for analysis
over 6-qubits on a standard computer. To mitigate this
limitation, we propose a novel deep-learning based ap-
proach to QST. Utilizing the CycleGAN architecture from
the field of computer vision, we aim to address the is-
sues of scalability and bias that plague current QST im-
plementations.

Introduction & Related Work

Quantum computing has the potential to revolutionize com-
puter science. Scientists are working to achieve quantum
supremacy (the potential ability to solve problems classi-
cal computers cannot) and quantum advantage (solving
problems faster), through the development of large-scale
quantum computing devices. This, for example, could result
in an exponential algorithmic runtime speedup of problems
such as optimization and prime factorization, that cannot be
solved with the most advanced classical supercomputers for
even moderately sized problem. At the root of the quantum
computer’s computational power is the qubit. In addition to
entanglement, qubits store information as a quantum super-
position of the two classical bit states, α|0〉 + β|1〉 (where
α, β ∈ C). A qubit measurement only reveals the classical
bit-value of 0 or 1, corresponding to qubit state |0〉 or |1〉,
respectively. However, the state to which a qubit collapses is
not random. By performing a statistical analysis of several
measurements, it is possible to infer the original superposi-
tion state and reconstruct the density matrix. This process is
known as Quantum State Tomography (QST) and is critical
to ensure the proper functionality of qubits and quantum
operations in a quantum computer.
QST was introduced long before the first quantum com-

puters came into existence, with related work dating as far
back as the 1980s [9]. While QST has been used to assess
actual quantum computers since the early 2000s [10, 14],

only recently it has become a highly active area of research.
This is in part due to recent advances in machine learning
and artificial intelligence as well as the realization of larger,
more capable, quantum systems. Historically, researchers
were mostly concerned with the actual fabrication of qubits,
using QST simply as a metric for qubit-quality factors, such
as coherence time and fidelity. As scalable quantum systems
became more feasible, research groups felt the need for ac-
curate metrics of algorithm and qubit performance on their
processors. This is evident from the increasing complexity
of recent work, and the superiority of the newer over tradi-
tional methods. Even with recent progress, QST has become
a limiting factor in the ability to assess quantum computers.
In 2019, the authors of a 12-qubit experiment claimed that
full state tomography was impractical and instead proved a
bound on state fidelity [7].
That being said, there currently exist a variety of quantum

computers, varying in type and size. These computers can
range from single-qubit laboratory systems to the 50-qubit
IBM machine and use physics ranging from superconducting
circuits to trapped ions, photonics, or majorana particles
[17]. One of the main challenges in the field is to make QST
algorithms broad and scalable enough to handle all this di-
versity of systems, as well as those still to come in the future.
The reported work addresses this difficulty by extending the
capacity of the MIT Engineering Quantum Systems (EQuS)
group 1- and 2-qubit QSTmethod1 to n-qubit systems. While
the mathematical and physical intuitions used to develop
the algorithm are broadly applicable, the analysis will be
tailored specifically to the superconducting artificial atoms
fabricated and tested by the EQuS group. This will enable
targeting and correction of the specific properties of this
particular system.
The main challenges in QST lie in the inherent noise and

imperfections of quantum systems, as well as the exponential
scaling of the density matrix in the number of qubits. Error
is frequently introduced by energy leakage during measure-
ments, as well as decay of the qubits themselves. Several
constraints on the density matrix, such as normalization and
positive semi-definiteness, must be met to ensure that the
final prediction represents an actual physical state. How-
ever, since the problem is one of statistical inference, it is
impossible to determine if the outcome of QST is correct,
even when the desired state is known. While this difficulty
can be addressed with recourse to machine learning, it cre-

1Implemented by EQuS postdoc Morten Kjaergaard based on the PhD
thesis of Jerry Chow, Yale University.
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ates a challenging learning problem, since the labels used
to train models might not be fully accurate. Furthermore,
the process of collecting data is resource and time intensive,
making it difficult to leverage big-data techniques.
Common mathematical techniques used in single-qubit

QST (which extend to multi-qubit QST) include Direct In-
version Tomography, Minimum P-Distance of Bloch vectors,
Maximum Fidelity, Fisher Information Distance, Maximum
Likelihhod Estimation (MLE), and Bayesian Mean Estima-
tion [12]. While MLE is one of the most commonly used
techniques, due to its simplicity and good performance, it
has received strong criticism, due to the existence of slightly
obscure but critical states for which it fails [5, 13]. Since
this technique is currently used in the EQuS QST imple-
mentation, an analysis of its reliability will be performed.
Furthermore, the recent trend in QST seems to be moving
away from highly mathematical and physics-based modeling
to the space of machine learning, namely deep learning.
A number of groups have been using neural networks to
learn the mappings from quantum processor output data to
quantum state representation [1, 15, 18].The current EQuS
algorithm does not make use of these state-of-the-art ma-
chine learning techniques, which will be an area of potential
exploration.
In order to implement n-qubit state tomography, we gen-

eralize the preexisting 1- and 2-qubit process. This QST
process consists of training a Support Vector Machine (SVM)
to count probabilities, curve-fitting Rabi oscillations to learn
‘beta’ parameters, solving for the measurement expecta-
tions, and using MLE to construct the density matrix. The
expanded QST code is tested on actual experimental data
from a 3-level, 2-qubit waveguide QED system. The n-qubit
expansion of the QST algorithm poses an interesting algo-
rithmic challenge, since the size of the density matrix scales
exponentially with the number of qubits (as a result of the
properties of the qubit Hilbert space). We achieve a 100x
speedup on the original QST implementation, but the ex-
ponential scaling dominates. 5-qubit tomography takes 15
minutes, while 6-qubit tomography takes 13 hours (on a
standard desktop) and any larger system is deemed com-
putationally infeasible. To address this, we propose a novel
approach to QST, based on the CycleGAN deep learning
model from the field of computer vision.
QstGAN is a new architecture, aimed at addressing two

of the main difficulties faced by QST. Since the CycleGAN
network was developed to process image data, which is
large and arguably the most complex domain currently con-
sidered in machine learning, we theorize that it will work
well for the large but simpler measurements of quantum
tomography. Although there has been recent work in the
field utilizing deep learning architectures, these are primar-
ily based on two types of approaches. One possibility is
to rely on fully-supervised architectures [6, 11, 19]. How-
ever, these networks suffer from the limitation that they can
only be trained with simulated data. Hence, they tend to
underperform when tested on real data.
The second possibility, which we pursue in this work, is

to use real data for training and rely on unsupervised ma-
chine learning techniques. Most works in this area have
used restricted Boltzmann machines [2, 16]. While lending

Figure 1: Example single-qubit measurement output mapped onto the I-Q
plane.

themselves to a compelling physical interpretation, these
networks are known to underperform a more recent class of
models known as generative adversarial learning (GAN) net-
works [8]. A particular class of these models, known as the
CycleGAN [20] has recently become popular in computer
vision, where it is considered state-of-the-art for problems
such as image synthesis. We will compare the performance
of QstGAN with other deep-learning and statistical QST
approaches.2

Methods

In this work, we aim to address two key challenges in QST:
1) inability to generate true density matrix labels for mea-
surement data and 2) exponential growth of parameters
with the number of qubits. We start by providing a brief
overview of the pre-existing 1 and 2-qubit QST implemented
by EQuS postdoc, Morten Kjaergaard, based on the method-
ology developed in the MS and PhD theses of Julia Cramer
[4] and Jerry Chow [3]. We also briefly discuss work to
improve and extend this implementation to n-qubits, em-
phasizing the limitations of this commonly used technique.
Finally, we propose a novel QST method, which utilizes the
CycleGAN network.

Traditional MLE Based QST

To perform QST, a series of single shot data (in the |0〉 and
|1〉 state), with respective labels, is first loaded into the code
suite. The measurement process consists of transmitting a
microwave with a specific frequency to the qubit and com-
paring it to the altered microwave returned by it. Using the
phase-shift between the two signals, the measurement can
be mapped onto the complex (I-Q) plane, as shown in [Fig
1]. An SVM is then trained to discern between the ground
and excited states, as shown in [Fig 2]. Next, a 0 to π Rabi
oscillation is performed on the quantum computer and the
Rabi voltages are converted to Rabi probabilities, using the
SVM. These probabilities are then fitted with cosines, and

2Note to reader: The QstGAN portion of the work was not completed
in the SuperUROP timeframe and there are no results to report. However,
the proposed high-level idea will be discussed in the Future Work section.

Page 2 of 7



Extending Quantum State Tomography for Superconducting Quantum Processors

Figure 2: An SVM trained to discern ground states from excited states for a
single-shot qubit experiment.

Figure 3: Beta parameters found by fitting cosines to Rabi oscillation proba-
bility curves, for a single-qubit experiment.

the parameters of the fit are used to find the ‘beta’ param-
eters of the quantum system, as shown in [Fig 3]. These
‘beta’ parameters indicate if the system has a tendency to
measure more or less frequently in the excited or ground
state. For example, when there is energy leakage, qubits
that should be in the excited state might occasionally decay
to the ground state before measurement.
Given β parameters, QST aims to reconstruct the density

matrix. To determine the density matrix of a given state, the
qubit is excited to that state within the quantum processor,
and a series of measurements (anywhere from hundreds to
thousands) is performed, separately along the x, y, and z
axes (different microwave pulses must be applied for each
axis). Using the SVM, the measured values are binned into
the |0〉 or |1〉 state, and the number of values in each bin
is denoted as p0 and p1 respectively. Using the previously
calculated β parameters, the system of equations[

p0

p1

]
=

[
β
|0〉
I β

|0〉
σA

β
|1〉
I β

|1〉
σA

] [
〈I〉M
〈σA〉M

]
, A ∈ {x, y, z}. (1)

is solved for the measurement expectations 〈I〉M and 〈σx〉M ,
〈σy〉M , and 〈σz〉M .
These measurement expectations are then used to esti-

mate the true expectations, using MLE. The true expecta-
tions are defined as

〈σA〉 = Tr(ρ1QBσA), (2)

where

ρ1QB =
1

2
(〈I〉I + 〈σx〉σx + 〈σy〉σy + 〈σz〉σz) (3)

is the density matrix, I the identity, and σx, σy, and σz
correspond to the three Pauli matrices. MLE minimizes the
cost function

L =
∑

P∈{σx,σy,σz}

(〈P 〉M − Tr(Pρt))
2 (4)

to find the density matrix ρt whose expectations of (2) best
match the measurement expectations 〈σx〉M , 〈σy〉M , and
〈σz〉M .
To ensure that the density matrix represents a true physi-

cal system, it must satisfy two constraints: it must be positive
semi-definite and normalizable. The MLE problem of (4)
enforces positive semi-definiteness by using the Cholesky
decomposition of the density matrix

ρt =
T †T

Tr(T †T )
, T =

[
t0 0

t2 + it3 t1

]
. (5)

Normalization is enforced by adding the constraint

t20 + t21 + t22 + t23 = 1 (6)

to the optimization. When the MLE optimization is complete,
the density matrix is determined by using the ti values to
construct ρt. Sample visualizations produced by the 1- and
2-qubit tomography code on experimental measurement
data are shown in [Fig 4] and [Fig 5].

MLE QST Extension and Limitations

The extension of this algorithm to larger qubit systems is
one of the primary focuses of this work. To enable this,
we performed work along two directions: theoretical and
algorithmic.

Theory

To better understand the theory behind the QST, we derived
an alternative form of the cost function of equation (4). This
was done with recourse to mathematical manipulation of the
Cholesky decomposition of the density matrix and the math-
ematical properties of the trace operation and eigenvalue
decomposition of matrices. The derivation is as follows.
We begin by replacing the density matrix with its Cholesky

decomposition,

Tr(Pρt) = Tr(P T †T
Tr(T †T )

) = Tr(PT †T )
Tr(T †T )

= Tr(TPT †)
Tr(TT †)

.
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Figure 4: Sample visualization of 1-qubit density matrix and corresponding
Bloch-sphere representation, from previous QST implementation.

We then replace the Pauli matrices with their respective
eigenvalue decompositions P = XΛPX

−1. Since the Pauli
matrices are unitary, X−1 = X†, and

Tr(TPT †)
Tr(TT †)

= Tr(TXΛPX
−1T †)

Tr(TXX†T †)
= Tr((TX)ΛP (TX)†)

Tr(TX(TX)†)
.

Defining Q = TX, it follows that

Tr(Pρt) =
Tr(QΛPQ

†)

Tr(QQ†)
. (7)

Using this in the MLE expression of (4) leads to

〈P 〉M − Tr(Pρt) = 〈P 〉M −
Tr(QΛPQ

†)
Tr(QQ†)

=
〈P 〉MTr(QQ†)−Tr(QΛPQ

†)

Tr(QQ†)

=
Tr(Q〈P 〉MQ†)−Tr(QΛPQ

†)

Tr(QQ†)

=
Tr(Q〈P 〉MQ†−QΛPQ

†)

Tr(QQ†)

=
Tr(Q(〈P 〉MI−ΛP )Q†)

Tr(QQ†)
.

Defining Λ′P = 〈P 〉MI − ΛP , we obtain the matrix P ′ of
eigenvalue decomposition P ′ = XΛ′PX

†, and can rewite
the expression above as

〈P 〉M − Tr(Pρt) =
Tr(T (XΛ′PX

†)T †)
Tr(TXX†T †)

= Tr(TP ′T †)
Tr(TT †)

= Tr(P ′ TT †

Tr(TT †)
)

= Tr(P ′ρt)

leading to a simplified expression for the cost function

Lnew =
∑
P ′

(Tr(P ′ρt))
2, (8)

where the P ′ matrices are the same as the P matrices, with
eigenvalues modified to

λP ′ = 〈P 〉M − λP . (9)

Implementation of this cost function achieved the same
speeds as the original form, but allowed us to further ana-
lyze the MLE optimization. For example, it becomes clear
that in order to minimize the cost, the columns of ρt should
lie in the nullspace of all the P ′ matrices. Furthermore, the
process of implementing this new cost function resulted in
the discovery of a flaw in our original Python implementa-
tion: an unnecessary, costly for-loop call in our cost function
generator method. Fixing this mistake resulted in a 100x
speed-up of our algorithm.

Figure 5: Sample visualization of 2-qubit density matrix, from previous QST
implementation.

Algorithms

To enable the extension of the MLE algorithm to larger qubit
systems, the functions used in the code were generalized to
account for multi-qubit entanglement. This posed a compu-
tational complexity challenge, since the size of the density
matrix is 4(# qubits). While the basic structure was established
with the development of the 2-qubit code, some tricks were
used in the n-qubit extension to minimize redundancies. For
example, when performing 3-qubit QST, if all three qubits
are measured along the x axis (an ′XXX ′ pulse), the val-
ues that would be found by applying an ′III ′, ′IIX ′, ′IXI ′,
′IXX ′, ′XII ′, ′XIX ′, or ′XXI ′ pulse fall out of the system
of equations relating binned values to expectation measure-
ments via ‘beta’ parameters, by extending (1). Furthermore,
from a software engineering perspective, the QST was previ-
ously implemented as two separate scripts, one for 1-qubit
and one for 2-qubit tomography. The overall code structure
has been overhauled to allow the user to simply select the
number of qubits for the tomography, by typing a value into
an all-purpose tomography function/class.
Although n-qubit tomography was theoretically achieved

in this work, in reality this approach is constrained by com-
putational runtime, as is discussed in the Results Section.
Furthermore, as discussed in the Introduction section, a num-
ber of studies have found that MLE has implicit biases in
how it maps unphysical states to physical ones. Finally, the
entire process of training the SVM and calculating the ‘beta’
matrix to prepare the system for MLE, relies on assumptions
about how the system works, which are likely to result in
error propagation. We propose a new approach to QST that
aims to address these issues in the Future Work section.

Results & Evaluation

Our experiments show that the more efficient implemen-
tation of the cost function, using (8), reduces the overall
runtime of QST by two orders of magnitude. This is shown
in [Fig 6]. This complexity reduction enables 5-qubit to-
mography in ∼10 minutes, instead of ∼17 hours [Fig 7] of
the original approach. We tested our implementation with
simulated noisy GHZ (maximally-entangled) states

|GHZ〉N =
|0〉⊗N + |1〉⊗N√

2
, (10)
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Figure 6: Comparison of runtime for naive and optimized MLE cost func-
tion implementations for multi-qubit systems. Timing measurements were
performed on Late 2014 iMac (4GHz Intel Core i7). Note that the optimized
cost function allows for the tomography of 6-qubits, which was not feasible
with the naive implementation.
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Figure 7: Convergence of MLE for naive and optimized cost function im-
plementations of a 4-qubit system. Timing measurements were performed
on Late 2014 iMac (4GHz Intel Core i7). Fidelity is calculated using the
Tr(ρestimatedρideal) formalism.

where N is the number of qubits, using the convergence
metric

Fidelity =
√
ρidealρest, (11)

where ρideal is the density matrix used to generate simulated
expectation values and ρest is the predicted density matrix
during each iteration of the MLE convergence process. It
should be noted that higher fidelities can be achieved by
reducing the MLE tolerance, at the cost of increased runtime.
While, in theory, this approach can work for any number

of qubits, the exponentially scaling algorithmic complexity
makes it practically infeasible for more than 6-qubits. Nev-
ertheless, for the near term benchmarking goals of EQuS, 3-
and 5-qubit packages, the approach is sufficient. Although
EQuS has not yet begun measuring 3-qubit or larger sys-
tems, we experimentally demonstrate the generalization
of the QST implementation on data from a state-of-the-art
waveguide QED experiment.3 Here, the author uses our
implementation to generate a density matrix from measure-
ments of a 3-level, 2-photon system [Fig 8]. This would
not have been possible with the previous 1- or 2-qubit to-
mography implementations, which only worked for 2-level
systems. The author demonstrated an 85% fidelity using
the tomography suite (in this fidelity calculation, ρideal is the
target state of the experiment and ρest is the QST-predicted
state).

3Bharath Kannan, Generating Non-Classical and Spatially-Correlated
Photons in a Waveguide QED Architecture (unpublished)

Figure 8: MLE QST implementation output from 3-level 2-qubit waveguide
QED experimental data. Only the real portion of the matrix is depicted. The
state was calculated to have 85% fidelity.

Future Work

Although our MLE implementation will suffice for the near-
term small-scale tomography purposes of the EQuS group,
corporate superconducting processors with anywhere from
19- (Rigetti Acorn) to 72-qubits (Google Bristlecone) already
exist. Thus, it is necessary to develop a more scalable form
of QST, in order to assess these large systems. We introduce
a novel QST framework, which draws inspiration from the
field of computer vision.

QstGAN: CycleGANs for QST

CycleGANs (Cycle-Consistent Generative Adversarial Net-
works) are frequently used for style transfer and image gen-
eration in computer vision. We propose to adapt this network
architecture to learn the mapping from measurement data
to density matrix and vice versa. Since CycleGANs networks
were designed to find patterns in very high-dimensional im-
age data, they are well suited to address the exponential
growth issue faced by QST. Furthermore, because they rely
on unsupervised learning, they are well suited to deal with
the small amounts of training data available and the lack of
groundtruth density matrix label for any given measurement
training data.
The proposed high-level architecture is shown in [Fig

9]. The network will consist of two generator networks
and a discriminator network. One generator will learn the
mapping from density matrix (plus random noise) to I-Q
measurement values, while the second generator will learn
the mapping from I-Q values to density matrix. The genera-
tor that takes the density matrix as input will map a high-
dimensional gaussian vector input to the IQ-measurement
values, conditioned on the given density matrix. When train-
ing the network, the discriminator will try to discriminate
between these synthetic measurements and real measure-
ment data. The process of training the network will consist
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Figure 9: Proposed QST CycleGANs network architecture.

of several iterations of measurement data generation and
discrimination, with a cycle-consistency check, to ensure
that the network is learning the proper transformation (by
checking that the inverse transform of the generated data
matches the original input).
One of the key challenges is ensuring that the network is

truly learning a mapping from measurement to density ma-
trix and back. Thus, to help guide the network, we propose
to pre-train the individual networks (prior to the overall
CycleGANs training) with simulated measurement values,
corresponding to ideal density matrices. This can be done by
calculating the probability counts from the density matrix
and creating a corresponding set of point clusters with a
distinct separation, along each of the measurement axes.
We will try training the network both with and without this
training step and see if it affects the outcome or performance.

QstGAN Proposed Implementation

Although the ultimate architecture is a CycleGAN (to learn
the mapping from measurement data to I-Q values and vice
versa), it is necessary to create a framework to optimize the
network parameters and serve as a performance benchmark.
Thus, we will begin by implementing a fully-supervised net-
work, followed by a GAN (just the mapping from measure-
ment data to density matrix). Once this works reasonably
well we train the CycleGAN. We will begin by focusing on
a 1-qubit system and characterize the performance of our
network. Once this produces good results, we will extend
our implementation to higher qubit systems.
To train the initial fully-supervised network, mapping

I-Q measurement values to density matrices, we will use
simulated data. We do not expect this to perform very well
on real data. We will add the GAN generator that maps
I-Q values to density matrices. We expect this to perform
worse than the ultimate CycleGAN network, which will have

a cycle-consistency check (meaning it will learn both the
function mapping and its inverse). We will try training
the network to generate three different forms of density
matrices (to determine which works best). The first will be
the entire density matrix, the second will be the Cholesky
decomposition of the density matrix, and the final will be
the expectation values along each of the measurement axes.
All represent the same information, but one structure could
be easier for the network to learn than the others.

Finally, we will train the full CycleGAN network with a
structure similar to that of the GAN. Our main experiment for
this architecture will be a comparison to pre-training with
simulated data, to see if we can boost network performance.

We will compare all of these networks by testing perfor-
mance on a common set of simulated data, for which we
have the groundtruth density matrix. We will also gener-
ate density matrices for experimental data using MLE and
compare the output to those of the three networks. We
will need to find a metric for experimental density matrix
comparisions and are currently considering Von Neumann
entanglement entropy.

To conclude our analysis, we will do a comparison with
other major tomography techniques and papers. Specifi-
cally, we plan to compare our CycleGAN architecture with
the generally accepted MLE approach, restricted Boltzmann
machine architectures (which have become the standard
deep learning approach in the field), and recent work using
tensor networks and Recursive Neural Networks (RNNs)
to characterize entanglement of large qubit systems. We
will use three main criteria in our assessment: algorithm
input (in our case this is the raw I-Q data, but all others
use the unphysical expectation measurements), complexity
(for all full-QST techniques this is O(4n)), and QST perfor-
mance (we hope that our network will achieve provably
better results).
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Conclusion

While QST is critical for analyzing the performance of quan-
tum processors, it proves to be a difficult problem, with
challenges ranging from measurement noise to exponen-
tial runtimes. In this work, we have improved the qubit
assessment capabilities of the EQuS superconducting quan-
tum processor by creating a more general implementation
of tomography and reducing measurement times. We also
propose a novel approach to QST, based on state-of-the-art
deep learning frameworks, which we hope will eliminate the
inherent critical challenges of quantum state tomography:
bias and scalability.
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